

B.Tech – CSE (Emerging Technologies)

Full Stack Development

 (AUTONOMOUS INSTITUTION – UGC, GOVT. OF INDIA)

Department of CSE
(Emerging Technologies)

(DATASCIENCE,CYBERSECURITY,IOT)

B.TECH(R-20 Regulation)
(IV YEAR – I SEM)

 (2023-24)

FULL STACK DEVELOPMENT

 (R20A0516)

LECTURE NOTES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12(B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India

MRCET CAMPUS

B.Tech – CSE (Emerging Technologies)

Full Stack Development

Department of Computer Science and Engineering

EMERGING TECHNOLOGIES

FULL STACK DEVELOPMENT

 (R20A0516)

LECTURE NOTES

Prepared by

 V.Suneetha,Associate Professor

M.Gayatri,Associate Professor

D.Kalpana,Associate Professor

On

01.06.2023

B.Tech – CSE (Emerging Technologies)

Full Stack Development

Departmen t of Computer Science and Engineering

EMERGING TECHNOLOGIES

Vision

 “To be at the forefront of Emerging Technologies and to evolve as a Centre of Excellence

in Research, Learning and Consultancy to foster the students into globally competent

professionals useful to the Society.”

Mission

The department of CSE (Emerging Technologies) is committed to:

 To offer highest Professional and Academic Standards in terms of Personal growth and
satisfaction.

 Make the society as the hub of emerging technologies and thereby capture
opportunities in new age technologies.

 To create a benchmark in the areas of Research, Education and Public Outreach.

 To provide students a platform where independent learning and scientific study are
encouraged with emphasis on latest engineering techniques.

QUALITY POLICY

 To pursue continual improvement of teaching learning process of Undergraduate and

Post Graduate programs in Engineering & Management vigorously.

 To provide state of art infrastructure and expertise to impart the quality education and

research environment to students for a complete learning experiences.

 Developing students with a disciplined and integrated personality.

 To offer quality relevant and cost effective programmes to produce engineers as per

requirements of the industry need.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

 MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY

 DEPARTMENT OF CSE(Emerging Technologies)

INDEX

SNO UNIT TOPIC PAGE

NO

1 I Web development Basics - HTML 2

2 I Web servers 35

3 I UNIX CLI Version control - Git & Github 36

4 I HTML, CSS 40

5 II Javascript basics OOPS Aspects of JavaScript Memory

usage and Functions in JS

60

6 II AJAX for data exchange with server jQuery

Framework jQuery events

69

7 II JSON data format. 80

8 III Introduction to React 83

9 III React Router and Single Page Applications React

Forms

90

10 III Flow Architecture 105

11 III Introduction to Redux More Redux 107

12 III Client-Server Communication 125

13 IV Java Web Development 129

14 IV Model View Controller (MVC) Pattern 130

15 IV MVC Architecture using Spring RESTful API 135

16 IV Spring Framework Building an application using

Maven

146

17 V Relational schemas 149

18 V Normalization Structured Query Language (SQL) 153

19 V Data persistence using Spring JDBC Agile

development principles

154

20 V Deploying application in Cloud 167

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 1 | P a g e

(R20A0516) FULL STACK DEVELOPMENT

COURSE OBJECTIVES:

1. To become knowledgeable about the most recent web development technologies.
2. Idea for creating two tier and three tier architectural web applications.

3. Design and Analyse real time web applications.

4. Constructing suitable client and server side applications.

5. To learn core concept of both front end and back end programming.

UNIT - I

Web Development Basics: Web development Basics - HTML & Web servers Shell - UNIX CLI

Version control - Git & Github HTML, CSS

UNIT - II

Frontend Development: Javascript basics OOPS Aspects of JavaScript Memory usage and Functions
in JS AJAX for data exchange with server jQuery Framework jQuery events, UI components etc.

JSON data format.

UNIT - III

REACT JS: Introduction to React React Router and Single Page Applications React Forms, Flow
Architecture and Introduction to Redux More Redux and Client-Server Communication

UNIT - IV

Java Web Development: JAVA PROGRAMMING BASICS, Model View Controller (MVC) Pattern
MVC Architecture using Spring RESTful API using Spring Framework Building an application

using Maven

UNIT - V

Databases & Deployment: Relational schemas and normalization Structured Query Language (SQL)

Data persistence using Spring JDBC Agile development principles and deploying application in
Cloud

TEXT BOOKS:

1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett

Professional JavaScript for Web Developers Book by Nicholas C. Zakas

2. Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating

Dynamic Websites by Robin Nixon

3. Full Stack JavaScript: Learn Backbone.js, Node.js and MongoDB. Copyright © 2015 BY
AZAT MARDAN

REFERENCE BOOKS:

1. Full-Stack JavaScript Development by Eric Bush.

2. Mastering Full Stack React Web Development Paperback – April 28, 2017 by Tomasz Dyl ,

Kamil Przeorski , Maciej Czarnecki

COURSE OUTCOMES:

1. Develop a fully functioning website and deploy on a web server.
2. Gain Knowledge about the front end and back end Tools
3. Find and use code packages based on their documentation to produce working results in a

project.

4. Create web pages that function using external data.

5. Implementation of web application employing efficient database access.

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 2 | P a g e

HTML Document Structure

A typical HTML document will have the following structure:

Document declaration tag

<html>

<head>

Document header related tags

</head>

<body>

Document body related tags

</body>

</html>

We will study all the header and body tags in subsequent chapters, but for now

let's see what is document declaration tag.

The <!DOCTYPE> Declaration

The <!DOCTYPE> declaration tag is used by the web browser to understand the

version of the HTML used in the document. Current version of HTML is 5 and it

makes use of the following declaration:

<!DOCTYPE html>

There are many other declaration types which can be used in HTML document

depending on what version of HTML is being used. We will see more details on

this while discussing <!DOCTYPE...> tag along with other HTML tags.

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 3 | P a g e

Heading Tags

Any document starts with a heading. You can use different sizes for your headings. HTML

also has six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>,

<h5>, and <h6>. While displaying any heading, browser adds one line before and one line

after that heading.

Example

<!DOCTYPE html>

<html>

<head>

<title>Heading Example</title>

</head>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>

This will produce the following result:

Paragraph Tag

The <p> tag offers a way to structure your text into different paragraphs. Each paragraph

of text should go in between an opening <p> and a closing </p> tag as shown below in the

example:

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 4 | P a g e

Line Break Tag

Whenever you use the
 element, anything following it starts from the next line. This

tag is an example of an empty element, where you do not need opening and closing tags,

as there is nothing to go in between them.

The
 tag has a space between the characters br and the forward slash. If you omit

this space, older browsers will have trouble rendering the line break, while if you miss the

forward slash character and just use
 it is not valid in XHTML.

Example

Example

<!DOCTYPE html>

<html>

<head>

<title>Paragraph Example</title>

</head>

<body>

<p>Here is a first paragraph of text.</p>

<p>Here is a second paragraph of text.</p>

<p>Here is a third paragraph of text.</p>

</body>

</html>

This will produce the following result:

Here is a first paragraph of text.

Here is a second paragraph of text.

Here is a third paragraph of text.

<!DOCTYPE html>

<html>

<head>

<title>Line Break Example</title>

</head>

<body>

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 5 | P a g e

Centering Content

You can use <center> tag to put any content in the center of the page or any table cell.

Example

<p>Hello

You delivered your assignment on time.

Thanks

Mahnaz</p>

</body>

</html>

This will produce the following result:
Hello
You delivered your assignment on time.

Thanks

Mahnaz

<!DOCTYPE html>

<html>

<head>

<title>Centring Content Example</title>

</head>

<body>

<p>This text is not in the center.</p>

<center>

<p>This text is in the center.</p>

</center>

</body>

</html>

This will produce the following result:

This text is not in the center.

This text is in the center.

B.Tech – CSE (Emerging Technologies) R-20

MRCET

Full Stack Development 6 | P a g e

Horizontal Lines

Horizontal lines are used to visually break-up sections of a document. The <hr> tag creates

a line from the current position in the document to the right margin and breaks the line

accordingly.

For example, you may want to give a line between two paragraphs as in the given example

below:

Example

Again <hr /> tag is an example of the empty element, where you do not need opening

and closing tags, as there is nothing to go in between them.

The <hr /> element has a space between the characters hr and the forward slash. If you

omit this space, older browsers will have trouble rendering the horizontal line, while if you

miss the forward slash character and just use <hr> it is not valid in XHTML

Preserve Formatting

Sometimes, you want your text to follow the exact format of how it is written in the HTML

document. In these cases, you can use the preformatted tag <pre>.

Any text between the opening <pre> tag and the closing </pre> tag will preserve the

formatting of the source document.

<!DOCTYPE html>

<html>

<head>

<title>Horizontal Line Example</title>

</head>

<body>

<p>This is paragraph one and should be on top</p>

<hr />

<p>This is paragraph two and should be at bottom</p>

</body>

</html>

This will produce the following result:

This is paragraph one and should be on top

This is paragraph two and should be at bottom

B.Tech – CSE (Emerging Technologies) MRCET

Full Stack Development 7 | P a g e

Example

Nonbreaking Spaces

Suppose you want to use the phrase "12 Angry Men." Here, you would not want a browser to
split the "12, Angry" and "Men" across two lines:

An example of this technique appears in the movie "12 Angry Men."

In cases, where you do not want the client browser to break text, you should use a

nonbreaking space entity instead of a normal space. For example, when coding the

"12 Angry Men" in a paragraph, you should use something similar to the following code:

Example

<!DOCTYPE html>

<html>

<!DOCTYPE html>

<html>

<head>

<title>Preserve Formatting Example</title>

</head>

<body>

<pre>

function testFunction(strText){

alert (strText)

}

</pre>

</body>

</html>

This will produce the following result:

function testFunction(strText){

alert (strText)

}

Try using the same code without keeping it inside <pre>...</pre> tags

B.Tech – CSE (Emerging Technologies) MRCET

Full Stack Development 8 | P a g e

<head>

<title>Nonbreaking Spaces Example</title>

</head>

<body>

<p>An example of this technique appears in the movie "12 Angry Men."</p>

</body>

</html>

HTML – ELEMENTS
HTML element is defined by a starting tag. If the element contains other content, it ends with a

closing tag, where the element name is preceded by a forward slash as shown below with few
tags:

Start Tag Content End Tag

<p> This is paragraph content. </p>

<h1> This is heading content. </h1>

<div> This is division content. </div>

So here <p>....</p> is an HTML element, <h1>...</h1> is another HTML element. There

are some HTML elements which don't need to be closed, such as <img.../>, <hr /> and

 elements. These are known as void elements.

HTML documents consists of a tree of these elements and they specify how HTML documents

should be built, and what kind of content should be placed in what part of an HTML document.

HTML Tag vs. Element

An HTML element is defined by a starting tag. If the element contains other content, it ends

with a closing tag.

B.Tech – CSE (Emerging Technologies) MRCET

Full Stack Development 9 | P a g e

For example, <p> is starting tag of a paragraph and </p> is closing tag of the same

paragraph but <p>This is paragraph</p> is a paragraph element.

Nested HTML Elements

It is very much allowed to keep one HTML element inside another HTML element:

Example
<!DOCTYPE html>

<html>
<head>

<title>Nested Elements Example</title>

</head>

<body>

<h1>This is <i>italic</i> heading</h1>

<p>This is <u>underlined</u> paragraph</p>

</body>

</html>

This will display the following result:

This is italic heading

This is underlined paragraph

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

3. HTML – ATTRIBUTES

We have seen few HTML tags and their usage like heading tags <h1>, <h2>, paragraph

tag <p> and other tags. We used them so far in their simplest form, but most of the HTML

tags can also have attributes, which are extra bits of information.

An attribute is used to define the characteristics of an HTML element and is placed inside

the element's opening tag. All attributes are made up of two parts: a name and a value:

 The name is the property you want to set. For example, the paragraph <p>

element in the example carries an attribute whose name is align, which you can use to

indicate

the alignment of paragraph on the page.

 The value is what you want the value of the property to be set and always put

within quotations. The below example shows three possible values of align

attribute: left, center and right.

Attribute names and attribute values are case-insensitive. However, the World Wide Web

Consortium (W3C) recommends lowercase attributes/attribute values in their HTML 4

recommendation.

Example

 Full Stack Development 10 |

<!DOCTYPE html>

<html>

<head>

<title>Align Attribute Example</title>

</head>

<body>

<p align="left">This is left aligned</p>

<p align="center">This is center aligned</p>

<p align="right">This is right aligned</p>

</body>

</html>

This will display the following result:

This is left aligned

This is center aligned
This is right aligned

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

Core Attributes

The four core attributes that can be used on the majority of HTML elements (although not all)

are:

 Id

 Title

 Class

 Style

The Id Attribute

The id attribute of an HTML tag can be used to uniquely identify any element within an

HTML page. There are two primary reasons that you might want to use an id attribute on an

element:

 If an element carries an id attribute as a unique identifier, it is possible to

identify just that element and its content.

 If you have two elements of the same name within a Web page (or style sheet),

you can use the id attribute to distinguish between elements that have the same

name.

We will discuss style sheet in separate tutorial. For now, let's use the id attribute to

distinguish between two paragraph elements as shown below.

Example

<p id="html">This para explains what is HTML</p>

<p id="css">This para explains what is Cascading Style Sheet</p>

The title Attribute

The title attribute gives a suggested title for the element. They syntax for the title attribute

is similar as explained for id attribute:

The behavior of this attribute will depend upon the element that carries it, although it is often

displayed as a tooltip when cursor comes over the element or while the element is loading.

Example

 Full Stack Development 11 |

<!DOCTYPE html>

<html>

<head>

<title>The title Attribute Example</title>

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

Now try to bring your cursor over "Titled Heading Tag Example" and you will see that

whatever title you used in your code is coming out as a tooltip of the cursor.

The class Attribute

The class attribute is used to associate an element with a style sheet, and specifies the

class of element. You will learn more about the use of the class attribute when you will learn

Cascading Style Sheet (CSS). So for now you can avoid it.

The value of the attribute may also be a space-separated list of class names. For example:

class="className1 className2 className3"

The style Attribute

The style attribute allows you to specify Cascading Style Sheet (CSS) rules within the element.

Full Stack Development 12 |

</head>

<body>

<h3 title="Hello HTML!">Titled Heading Tag Example</h3>

</body>

</html>

This will produce the following result:

Titled Heading Tag Example

<!DOCTYPE html>

<html>

<head>

<title>The style Attribute</title>

</head>

<body>

<p style="font-family:arial; color:#FF0000;">Some text...</p>

</body>

</html>

This will produce the following result:

Some text...

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

At this point of time, we are not learning CSS, so just let's proceed without bothering much

about CSS. Here, you need to understand what are HTML attributes and how they can be

used while formatting content.

Internationalization Attributes

There are three internationalization attributes, which are available for most (although not

all) XHTML elements.

 dir

 lang

 xml:lang

The dir Attribute

The dir attribute allows you to indicate to the browser about the direction in which the text

should flow. The dir attribute can take one of two values, as you can see in the table that

follows:

Value Meaning

ltr Left to right (the default value)

rtl Right to left (for languages such as Hebrew or Arabic that are read right to left)

Full Stack Development 13 |

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

Example

When dir attribute is used within the <html> tag, it determines how text will be presented

within the entire document. When used within another tag, it controls the text's direction for

just the content of that tag.

The lang Attribute
The lang attribute allows you to indicate the main language used in a document, but this

attribute was kept in HTML only for backwards compatibility with earlier versions of HTML.

This attribute has been replaced by the xml:lang attribute in new XHTML documents.

The values of the lang attribute are ISO-639 standard two-character language codes. Check
HTML Language Codes: ISO 639 for a complete list of language codes.

Example

<!DOCTYPE html>

<html lang="en">

<head>

<title>English Language Page</title>

</head>

<body>

This page is using English Language

</body>

</html>

Full Stack Development 14 |

<!DOCTYPE html>

<html dir="rtl">

<head>

<title>Display Directions</title>

</head>

<body>

This is how IE 5 renders right-to-left directed text.

</body>

</html>

This will produce the following result:

This is how IE 5 renders right-to-left directed text.

http://www.tutorialspoint.com/html/language_iso_codes.htm

P a g e

B.Tech – CSE (Emerging Technologies) MRCET

The xml:lang Attribute

The xml:lang attribute is the XHTML replacement for the lang attribute. The value of

thexml:lang attribute should be an ISO-639 country code as mentioned in previous section.

Generic Attributes

Here's a table of some other attributes that are readily usable with many of the HTML tags.

 Attribute Options Function

align right, left, center Horizontally aligns tags

valign top, middle, bottom

Vertically aligns tags within an HTML

 element.

bgcolor numeric, hexidecimal, RGB Places a background color behind an

 values element

background URL Places a background image behind an

 element

id User Defined Names an element for use with Cascading

 Style Sheets.

class User Defined Classifies an element for use with Cascading

 Style Sheets.

width Numeric Value Specifies the width of tables, images, or

 table cells.

height Numeric Value Specifies the height of tables, images, or

 table cells.

title User Defined "Pop-up" title of the elements.

We will see related examples as we will proceed to study other HTML tags. For a complete
list of HTML Tags and related attributes please check reference to HTML Tags List.

If you use a word processor, you must be familiar with the ability to make text bold,

italicized, or underlined; these are just three of the ten options available to indicate how

text can appear in HTML and XHTML.

Full Stack Development 15 |

http://www.tutorialspoint.com/html/html_tags_ref.htm

P a g e

 B.Tech – CSE (Emerging Technologies) MRCET

Bold Text

Anything that appears within ... element, is displayed in bold as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Bold Text Example</title>

</head>

<body>

<p>The following word uses a bold typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses a bold typeface.

Italic Text

Anything that appears within <i>...</i> element is displayed in italicized as shown below:

Example

 Full Stack Development 16 |

<!DOCTYPE html>

<html>

<head>

<title>Italic Text Example</title>

</head>
<body>

<p>The following word uses a <i>italicized</i> typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses an italicized typeface.

P a g e

 B.Tech – CSE (Emerging Technologies) MRCET

Underlined Text

Anything that appears within <u>...</u> element, is displayed with underline as

shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Underlined Text Example</title>

</head>

<body>

<p>The following word uses a <u>underlined</u> typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses an underlined typeface.

Strike Text

Anything that appears within <strike>...</strike> element is displayed with

strikethrough, which is a thin line through the text as shown below:

Example

 Full Stack Development 17 |

<!DOCTYPE html>

<html>

<head>
<title>Strike Text Example</title>

</head>

<body>

<p>The following word uses a <strike>strikethrough</strike> typeface.</p>

</body>

</html>
This will produce the following result:

The following word uses a strikethrough typeface.

P a g e

 B.Tech – CSE (Emerging Technologies) MRCET

Monospaced Font

The content of a <tt>...</tt> element is written in monospaced font. Most of the fonts are

known as variable-width fonts because different letters are of different widths (for example,

the letter 'm' is wider than the letter 'i'). In a monospaced font, however, each letter has

the same width.

Example

<!DOCTYPE html>

<html>

<head>

<title>Monospaced Font Example</title>

</head>

<body>

<p>The following word uses a <tt>monospaced</tt> typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses a monospaced typeface.

Superscript Text

The content of a ^{...} element is written in superscript; the font size used is

the same size as the characters surrounding it but is displayed half a character's height

above the other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Superscript Text Example</title>

</head>

<body>

<p>The following word uses a ^{superscript} typeface.</p>

</body>

</html>

 Full Stack Development 18 |

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

This will produce the following result:

The following word uses a superscript typeface.

Subscript Text

The content of a _{...} element is written in subscript; the font size used is the

same as the characters surrounding it, but is displayed half a character's height beneath the

other characters.

Example

<!DOCTYPE html>

<html>

<head>

<title>Subscript Text Example</title>

</head>

<body>

<p>The following word uses a _{subscript} typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses a subscript typeface.

Inserted Text

Anything that appears within <ins>...</ins> element is displayed as inserted text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Inserted Text Example</title>

</head>

<body>

<p>I want to drink cola <ins>wine</ins></p>

</body>

</html>

 Full Stack Development 19 |

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

This will produce the following result:

Deleted Text

Anything that appears within ... element, is displayed as deleted text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Deleted Text Example</title>

</head>

<body>

<p>I want to drink cola <ins>wine</ins></p>

</body>

</html>

This will produce the following result:

Larger Text

The content of the <big>...</big> element is displayed one font size larger than the rest

of the text surrounding it as shown below:

Example

<!DOCTYPE html>

<html>

<head>

<title>Larger Text Example</title>

</head>

<body>

<p>The following word uses a <big>big</big> typeface.</p>

</body>

Full Stack Development 20 |

B.Tech – CSE (Emerging Technologies) MRCET

P a g e

</html>

This will produce the following result:

The following word uses a big typeface.

Smaller Text

The content of the <small>...</small> element is displayed one font size smaller than

the rest of the text surrounding it as shown below:

Example

Grouping Content

The <div> and elements allow you to group together several elements to create

sections or subsections of a page.

For example, you might want to put all of the footnotes on a page within a <div> element

to indicate that all of the elements within that <div> element relate to the footnotes. You

might then attach a style to this <div> element so that they appear using a special set of

style rules.

Example

Full Stack Development 21 |

<!DOCTYPE html>

<html>

<head>

<title>Smaller Text Example</title>

</head>

<body>

<p>The following word uses a <small>small</small> typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses a small typeface.

<!DOCTYPE html>

<html>

B.Tech – CSE (Emerging Technologies)

MRCET

Full Stack Development 22 |
P a g e

HOME | CONTACT | ABOUT

CONTENT ARTICLES

Actual content goes here.....

The element, on the other hand, can be used to group inline elements only. So, if

you have a part of a sentence or paragraph which you want to group together, you could

use the element as follows

Example

<!DOCTYPE html>

<html>

<head>

<title>Span Tag Example</title>

</head>

<body>

<p>This is the example of span tag and the <span
style="color:red">div tag alongwith CSS</p>

<head>

<title>Div Tag Example</title>

</head>

<body>

<div id="menu" align="middle" >

HOME |

CONTACT |

ABOUT </div>

<div id="content" align="left" bgcolor="white">

<h5>Content Articles</h5>

<p>Actual content goes here. ... </p>

</div>

</body>

</html>

This will produce the following result:

http://localhost/index.htm
http://localhost/index.htm
http://localhost/about/index.htm

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

</body>

</html>

This will produce the following result:

This is the example of span tag and the div tag along with CSS

These tags are commonly used with CSS to allow you to attach a style to a section of a page.

6. HTML – PHRASE TAGS

The phrase tags have been desicolgned for specific purposes, though they are displayed in a

similar way as other basic tags like , <i>, <pre>, and <tt>, you have seen in

previous chapter. This chapter will take you through all the important phrase tags, so let's

start seeing them one by one.

Emphasized Text

Anything that appears within ... element is displayed as emphasized text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Emphasized Text Example</title>

</head>

<body>

<p>The following word uses a emphasized typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses an emphasized typeface.

Marked Text

Anything that appears with-in <mark>...</mark> element, is displayed as marked with

yellow ink.

Example

Full Stack Development 23 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Strong Text

Anything that appears within ... element is displayed as important text.

Example

<!DOCTYPE html>

<html>

<head>

<title>Strong Text Example</title>

</head>

<body>

<p>The following word uses a strong typeface.</p>

</body>

</html>

This will produce the following result:

The following word uses a strong typeface.

Text Abbreviation

You can abbreviate a text by putting it inside opening <abbr> and closing </abbr> tags. If

present, the title attribute must contain this full description and nothing else.

Example

Full Stack Development 24 |

<!DOCTYPE html>
<html>
<head>
<title>Marked Text Example</title>
</head>
<body>
<p>The following word has been <mark>marked</mark> with yellow</p>
</body>
</html>

This will produce the following result:

The following word has been marked with yellow

<!DOCTYPE html>

<html>

<head>
<title>Text Abbreviation</title>

</head>

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Acronym Element

The <acronym> element allows you to indicate that the text between <acronym> and

</acronym> tags is an acronym.

At present, the major browsers do not change the appearance of the content of the

<acronym> element.

Example

<!DOCTYPE html>

<html>

<head>

<title>Acronym Example</title>

</head>

<body>

<p>This chapter covers marking up text in <acronym>XHTML</acronym>.</p>

</body>

</html>

This will produce the following result:

This chapter covers marking up text in XHTML.

Full Stack Development 25 |

<body>

<p>My best friend's name is <abbr title="Abhishek">Abhy</abbr>.</p>

</body>

</html>

This will produce the following result:

My best friend's name is Abhy.

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Text Direction

The <bdo>...</bdo> element stands for Bi-Directional Override and it is used to override

the current text direction.

Example

Special Terms

The <dfn>...</dfn> element (or HTML Definition Element) allows you to specify that you are

introducing a special term. It's usage is similar to italic words in the midst of a paragraph.

Typically, you would use the <dfn> element the first time you introduce a key term. Most

recent browsers render the content of a <dfn> element in an italic font.

Example

<!DOCTYPE html>

<html>

<head>

<title>Special Terms Example</title>

</head>

<body>

<p>The following word is a <dfn>special</dfn> term.</p>

</body>

Full Stack Development 26 |

<!DOCTYPE html>

<html>

<head>

<title>Text Direction Example</title>

</head>

<body>

<p>This text will go left to right.</p>

<p><bdo dir="rtl">This text will go right to left.</bdo></p>

</body>

</html>

This will produce the following result:

This text will go left to right.

This text will go right to left.

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

</html>

This will produce the following result:

The following word is a special term.

Quoting Text

When you want to quote a passage from another source, you should put it in

between<blockquote>...</blockquote> tags.

Text inside a <blockquote> element is usually indented from the left and right edges of the

surrounding text, and sometimes uses an italicized font.

Example

Short Quotations

The <q>...</q> element is used when you want to add a double quote within a sentence.

Example

Full Stack Development 27 |

<!DOCTYPE html>

<html>

<head>

<title>Blockquote Example</title>

</head>

<body>

<p>The following description of XHTML is taken from the W3C Web site:</p>

<blockquote>XHTML 1.0 is the W3C's first Recommendation for XHTML, following on
from earlier work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.0.</blockquote>
</body>

</html>

This will produce the following result:

The following description of XHTML is taken from the W3C Web site:

XHTML 1.0 is the W3C's first Recommendation for XHTML, following on from earlier
work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.0.

<!DOCTYPE html>

<html>

<head>

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Text Citations

If you are quoting a text, you can indicate the source placing it between an opening

<cite>tag and closing </cite> tag

As you would expect in a print publication, the content of the <cite> element is rendered in

italicized text by default.

Example

Computer Code

Any programming code to appear on a Web page should be placed inside

<code>...</code>tags. Usually the content of the <code> element is presented in a

monospaced font, just like the code in most programming books.

Full Stack Development 28 |

<title>Double Quote Example</title>

</head>

<body>

<p>Amit is in Spain, <q>I think I am wrong</q>.</p>

</body>

</html>

This will produce the following result:

Amit is in Spain, I think I am wrong.

<!DOCTYPE html>

<html>

<head>

<title>Citations Example</title>

</head>

<body>

<p>This HTML tutorial is derived from <cite>W3 Standard for HTML</cite>.</p>

</body>

</html>

This will produce the following result:

This HTML tutorial is derived from W3 Standard for HTML.

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Example

Keyboard Text

When you are talking about computers, if you want to tell a reader to enter some text, you

can use the <kbd>...</kbd> element to indicate what should be typed in, as in this

example.

Example

Programming Variables

Full Stack Development 29 |

<!DOCTYPE html>

<html>

<head>

<title>Computer Code Example</title>

</head>

<body>

<p>Regular text. <code>This is code.</code> Regular text.</p>

</body>

</html>

This will produce the following result:

Regular text. This is code. Regular text.

<!DOCTYPE html>

<html>

<head>

<title>Keyboard Text Example</title>

</head>

<body>

<p>Regular text. <kbd>This is inside kbd element</kbd> Regular text.</p>

</body>

</html>

This will produce the following result:

Regular text. This is inside kbd element Regular text.

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

This element is usually used in conjunction with the <pre> and <code> elements to

indicate that the content of that element is a variable.

Example

<!DOCTYPE html>

<html>

<head>

<title>Variable Text Example</title>

</head>

<body>

<p><code>document.write("<var>user-name</var>")</code></p>

</body>

</html>

This will produce the following result:

document.write("user-name")

Program Output

The <samp>...</samp> element indicates sample output from a program, and script etc.

Again, it is mainly used when documenting programming or coding concepts.

Example

<!DOCTYPE html>

<html>

<head>

<title>Program Output Example</title>

</head>

<body>

<p>Result produced by the program is <samp>Hello World!</samp></p>

</body>

</html>

This will produce the following result:

Result produced by the program is Hello World!

Address Text

The <address>...</address> element is used to contain any address.

Full Stack Development 30 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Example

<!DOCTYPE html>

<html>

<head>

<title>Address Example</title>

</head>

<body>

<address>388A, Road No 22, Jubilee Hills - Hyderabad</address>

</body>

</html>

This will produce the following result:

388A, Road No 22, Jubilee Hills - Hyderabad

 7.HTML – META TAGS

HTML lets you specify metadata - additional important information about a document in a

variety of ways. The META elements can be used to include name/value pairs describing

properties of the HTML document, such as author, expiry date, a list of keywords, document

author etc.

The <meta> tag is used to provide such additional information. This tag is an empty

element and so does not have a closing tag but it carries information within its attributes.

You can include one or more meta tags in your document based on what information you

want to keep in your document but in general, meta tags do not impact physical appearance

of the document so from appearance point of view, it does not matter if you include them or

not.

Adding Meta Tags to Your Documents

You can add metadata to your web pages by placing <meta> tags inside the header of the

document which is represented by <head> and </head> tags. A meta tag can have

following attributes in addition to core attributes:

Attribute Description

Full Stack Development 31 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Name Name for the property. Can be anything. Examples include, keywords,

description, author, revised, generator etc.

content Specifies the property's value.

scheme Specifies a scheme to interpret the property's value (as declared in the

content attribute).

http- Used for http response message headers. For example, http-equiv can be

equiv used to refresh the page or to set a cookie. Values include content-type,

 expires, refresh and set-cookie.

Specifying Keywords

You can use <meta> tag to specify important keywords related to the document and later

these keywords are used by the search engines while indexing your webpage for searching

purpose.

Example

Following is an example, where we are adding HTML, Meta Tags, Metadata as important

keywords about the document.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

This will produce the following result:

Hello HTML5!

Document Description

Full Stack Development 32 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

You can use <meta> tag to give a short description about the document. This again can be

used by various search engines while indexing your webpage for searching purpose.

Example

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

<meta name="description" content="Learning about Meta Tags." />

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Document Revision Date

You can use <meta> tag to give information about when last time the document was updated.

This information can be used by various web browsers while refreshing your webpage.

Example

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

<meta name="description" content="Learning about Meta Tags." />

<meta name="revised" content="Tutorialspoint, 3/7/2014" />

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

Full Stack Development 33 |

B.Tech – CSE (Emerging Technologies)

MRCET

Full Stack Development 34 |
P a g e

Document Refreshing

A <meta> tag can be used to specify a duration after which your web page will keep

refreshing automatically.

Example

If you want your page keep refreshing after every 5 seconds then use the following syntax.

Page Redirection

You can use <meta> tag to redirect your page to any other webpage. You can also specify a

duration if you want to redirect the page after a certain number of seconds.

Example

Following is an example of redirecting current page to another page after 5 seconds. If you

want to redirect page immediately then do not specify content attribute.

<!DOCTYPE html>

<html>

<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

<meta name="description" content="Learning about Meta Tags." />

<meta name="revised" content="Tutorialspoint, 3/7/2014" />

<meta http-equiv="refresh" content="5; url=http://www.tutorialspoint.com" />

</head>

<body>

<!DOCTYPE html>

<html>
<head>

<title>Meta Tags Example</title>

<meta name="keywords" content="HTML, Meta Tags, Metadata" />

<meta name="description" content="Learning about Meta Tags." />

<meta name="revised" content="Tutorialspoint, 3/7/2014" />

<meta http-equiv="refresh" content="5" />

</head>

<body>

<p>Hello HTML5!</p>

</body>

</html>

http://www.tutorialspoint.com/
http://www.tutorialspoint.com/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

<p>Hello HTML5!</p>

</body>

</html>

WEB SERVER

A web server is a computer that stores web server software and a website's component files (for

example, HTML documents, images, CSS stylesheets, and JavaScript files). A web server

connects to the Internet and supports physical data interchange with other devices connected to

the web.

A web server includes several parts that control how web users access hosted files. At a

minimum, this is an HTTP server. An HTTP server is software that understands URLs (web

addresses) and HTTP (the protocol your browser uses to view webpages). An HTTP server can

be accessed through the domain names of the websites it stores, and it delivers the content of

these hosted websites to the end user's device.

At the most basic level, whenever a browser needs a file that is hosted on a web server, the

browser requests the file via HTTP. When the request reaches the correct (hardware) web server,

the (software) HTTP server accepts the request, finds the requested document, and sends it back

to the browser, also through HTTP. (If the server doesn't find the requested document, it returns

a 404 response instead.)

Basic representation of a client/server connection through HTTP

To publish a website, you need either a static or a dynamic web server.

A static web server, or stack, consists of a computer (hardware) with an HTTP server (software).

We call it "static" because the server sends its hosted files as-is to your browser.

A dynamic web server consists of a static web server plus extra software, most commonly an

application server and a database. We call it "dynamic" because the application server updates

the hosted files before sending content to your browser via the HTTP server.

For example, to produce the final webpages you see in the browser, the application server might

fill an HTML template with content from a database. Sites like MDN or Wikipedia have

thousands of webpages. Typically, these kinds of sites are composed of only a few HTML

templates and a giant database, rather than thousands of static HTML documents. This setup

makes it easier to maintain and deliver the content.

Full Stack Development 35 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Git & Github

What is Git?

Git is a popular version control system. It was created by Linus Torvalds in

2005, and has been maintained by Junio Hamano since then.

It is used for:

 Tracking code changes

 Tracking who made changes

 Coding collaboration

What does Git do?

 Manage projects with Repositories
 Clone a project to work on a local copy
 Control and track changes with Staging and Committing

 Branch and Merge to allow for work on different parts and versions of a
project

 Pull the latest version of the project to a local copy

 Push local updates to the main project

Working with Git

 Initialize Git on a folder, making it a Repository
 Git now creates a hidden folder to keep track of changes in that folder

 When a file is changed, added or deleted, it is considered modified
 You select the modified files you want to Stage

 The Staged files are Committed, which prompts Git to store
a permanent snapshot of the files

 Git allows you to see the full history of every commit.
 You can revert back to any previous commit.

 Git does not store a separate copy of every file in every commit, but

keeps track of changes made in each commit!

Github
GitHub is a code hosting platform for version control and collaboration. It

lets you and others work together on projects from anywhere.

This tutorial teaches you GitHub essentials like repositories, branches,

commits, and pull requests. You'll create your own Hello World repository

Full Stack Development 36 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

and learn GitHub's pull request workflow, a popular way to create and review

code.

In this quickstart guide, you will:

• Create and use a repository

• Start and manage a new branch

• Make changes to a file and push them to GitHub as commits

• Open and merge a pull request

To complete this tutorial, you need a GitHub account and Internet access.

You don't need to know how to code, use the command line, or install Git

(the version control software that GitHub is built on). If you have a question

about any of the expressions used in this guide, head on over to the

glossary to find out more about our terminology.

Creating a repository

A repository is usually used to organize a single project. Repositories can

contain folders and files, images, videos, spreadsheets, and data sets --

anything your project needs. Often, repositories include a README file, a file

with information about your project. README files are written in the plain

text Markdown language. You can use this cheat sheet to get started with

Markdown syntax. GitHub lets you add a README file at the same time you

create your new repository. GitHub also offers other common options such

as a license file, but you do not have to select any of them now.

Your hello-world repository can be a place where you store ideas, resources,

or even share and discuss things with others.

1. In the upper-right corner of any page, use the drop-down menu, and

select

2. New repository.

3. In the Repository name box, enter hello-world.

4. In the Description box, write a short description.

Full Stack Development 37 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

5. Select Add a README file.

6. Select whether your repository will be Public or Private.

7. Click Create repository.

Creating a branch

Branching lets you have different versions of a repository at one time.

By default, your repository has one branch named main that is considered to

be the definitive branch. You can create additional branches off of main in

your repository. You can use branches to have different versions of a project

at one time. This is helpful when you want to add new features to a project

without changing the main source of code. The work done on different

branches will not show up on the main branch until you merge it, which we

Full Stack Development 38 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

will cover later in this guide. You can use branches to experiment and make

edits before committing them to main.

When you create a branch off the main branch, you're making a copy, or

snapshot, of main as it was at that point in time. If someone else made

changes to the main branch while you were working on your branch, you

could pull in those updates.

This diagram shows:

 The main branch

 A new branch called feature

 The journey that feature takes before it's merged into main

Have you ever saved different versions of a file? Something like:

 story.txt

 story-edit.txt

 story-edit-reviewed.txt

Branches accomplish similar goals in GitHub repositories.

Here at GitHub, our developers, writers, and designers use branches for

keeping bug fixes and feature work separate from our main (production)

branch. When a change is ready, they merge their branch into main.

Full Stack Development 39 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 What is CSS?
While HTML is a markup language used to format/structure a web page,
CSS is a design language that you use to make your web page look nice
and presentable.
CSS stands for Cascading Style Sheets, and you use it to improve the
appearance of a web page. By adding thoughtful CSS styles, you make
your page more attractive and pleasant for the end user to view and use.
Imagine if human beings were just made to have skeletons and bare
bones – how would that look? Not nice if you ask me. So CSS is like our
skin, hair, and general physical appearance.

You can also use CSS to layout elements by positioning them in
specified areas of your page.

To access these elements, you have to “select” them. You can select a
single or multiple web elements and specify how you want them to look
or be positioned.

The rules that govern this process are called CSS selectors.

With CSS you can set the colour and background of your elements, as
well as the typeface, margins, spacing, padding and so much more.

If you remember our example HTML page, we had elements which were
pretty self-explanatory. For example, I stated that I would change the
color of the level one heading h1 to red.
To illustrate how CSS works, I will be sharing the code which sets the
background-color of the three levels of headers to red, blue, and green
respectively:

h1 {

background-color: #ff0000;

}

Full Stack Development 40 |

https://www.freecodecamp.org/news/use-css-selectors-to-style-webpage/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

h2 {

background-color: #0000FF;

}

h3 {

background-color: #00FF00;

}

em {

background-color: #000000;

color: #ffffff;

}

localhost:3000/styles.css

The above style, when applied, will change the appearance of our web
page to this:

Cool, right?

Full Stack Development 41 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

We access each of the elements we want to work on by "selecting"
them. The h1 selects all level 1 headings in the page, the h2 selects the
level 2 elements, and so on. You can select any single HTML element
you want and specify how you want it to look or be positioned.
Want to learn more about CSS? You can check out the second part of

freeCodeCamp's Responsive Web Design certification to get started.

What is JavaScript?
Now, if HTML is the markup language and CSS is the design language,
then JavaScript is the programming language.

If you don’t know what programming is, think of certain actions you take
in your daily life:

When you sense danger, you run. When you are hungry, you eat. When
you are tired, you sleep. When you are cold, you look for warmth. When
crossing a busy road, you calculate the distance of vehicles away from
you.

Your brain has been programmed to react in a certain way or do certain
things whenever something happens. In this same way, you can
program your web page or individual elements to react a certain way and
to do something when something else (an event) happens.

You can program actions, conditions, calculations, network requests,
concurrent tasks and many other kinds of instructions.

You can access any elements through the Document Object Model API

(DOM) and make them change however you want them to.

The DOM is a tree-like representation of the web page that gets loaded
into the browser.

Full Stack Development 42 |

https://www.freecodecamp.org/learn/responsive-web-design/
https://www.freecodecamp.org/learn/responsive-web-design/
https://www.freecodecamp.org/news/how-to-manipulate-the-dom-beginners-guide/
https://www.freecodecamp.org/news/how-to-manipulate-the-dom-beginners-guide/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Eac

h element on the web page is represented on the DOM

Thanks to the DOM, we can use methods like getElementById() to access
elements from our web page.
JavaScript allows you to make your webpage “think and act”, which is
what programming is all about.
If you remember from our example HTML page, I mentioned that I was
going to sum up the two numbers displayed on the page and then
display the result in the place of the placeholder text. The calculation
runs once the button gets clicked.

Full Stack Development 43 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

cking the "Get the sum" button will display the sum of 2 and 7

This code illustrates how you can do calculations with JavaScript:

function displaySum() {

let firstNum = Number(document.getElementById('firstNum').innerHTML)

let secondNum = Number(document.getElementById('secondNum').innerHTML)

Cli

let total = firstNum + secondNum;

document.getElementById("answer").innerHTML = ` ${firstNum} + ${secondNum}, equals to ${total}`

;

}

document.getElementById('sumButton').addEventListener("click", displaySum);

Remember what I told you about HTML attributes and their uses? This

code displays just that.

The displaySum is a function which gets both items from the web page,
converts them to numbers (with the Number method), sums them up,
and passes them in as inner values to another element.

Full Stack Development 44 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The reason we were able to access these elements in our JavaScript
was because we had set unique attributes on them, to help us identify
them.

So thanks to this:

// id attribute has been set in all three

2

...7

...... (placeholder for the answer)

We were able to do this:

//getElementById will get all HTML elements by a specific "id" attribute

...

let firstNum = Number(document.getElementById('firstNum').innerHTML)

let secondNum = Number(document.getElementById('secondNum').innerHTML)

let total = firstNum + secondNum;

document.getElementById("answer").innerHTML = ` ${firstNum} + ${secondNum}, equals to ${total}`

;

Finally, upon clicking the button, you will see the sum of the two
numbers on the newly updated page:

Full Stack Development 45 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

2

plus 7 is equals to 9

If you want to get started with JavaScript, you can check out
freeCodeCamp's JavaScript Algorithms and Data Structures certification.

And you can use this great Intro to JS course to supplement your learning.

How to Put HTML, CSS, and JavaScript Together
Together, we use these three languages to format, design, and program

web pages.

And when you link together some web pages with hyperlinks, along with
all their assets like images, videos, and so on that are on the server
computer, it gets rendered into a website.
This rendering typically happens on the front end, where the users can
see what's being displayed and interact with it.

On the other hand, data, especially sensitive information like passwords,
are stored and supplied from the back end part of the website. This is
the part of a website which exists only on the server computer, and isn't
displayed on the front-end browser. There, the user cannot see or
readily access that information.

Full Stack Development 46 |

https://www.freecodecamp.org/learn/javascript-algorithms-and-data-structures/
https://www.freecodecamp.org/news/learn-javascript-full-course/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Wrapping Up
As a web developer, the three main languages we use to build websites
are HTML, CSS, and JavaScript.

JavaScript is the programming language, we use HTML to structure the
site, and we use CSS to design and layout the web page.

These days, CSS has become more than just a design language,
though. You can actually implement animations and smooth transitions
with just CSS.

In fact, you can do some basic programming with CSS too. An example
of this is when you use media queries, where you define different style
rules for different kinds of screens (resolutions).

JavaScript has also grown beyond being used just in the browser as
well. We now use it on the server thanks to Node.js.
But the basic fact remains: HTML, CSS, and JavaScript are the main
languages of the Web.

So that's it. The languages of the Web explained in basic terms. I really
hope you got something useful from this article.

Web Servers Shell:
A web shell is a shell-like interface that enables a web server to be
remotely accessed, often for the purposes of cyberattacks.[1] A web
shell is unique in that a web browser is used to interact with it.[2][3]

A web shell could be programmed in any programming language that is
supported on a server. Web shells are most commonly written in the
PHP programming language due to the widespread usage of PHP for
web applications. However, Active Server Pages, ASP.NET, Python, Perl,

Full Stack Development 47 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Ruby, and Unix shell scripts are also used, although these languages are
less commonly used.[1][2][3]

Using network monitoring tools, an attacker can find vulnerabilities that
can potentially allow delivery of a web shell. These vulnerabilities are
often present in applications that are run on a web server.[2]

An attacker can use a web shell to issue shell commands, perform
privilege escalation on the web server, and the ability to upload, delete,
download, and execute files to and from the web server.[2

UNIX CLI Version control
We have various commands that help us to find out the Unix variant, type, and
machine. The most common Unix command is uname, and we will talk about
it first, followed by variant-specific information.

Checking Unix version

1. Open the terminal application and then type the following uname
command:
uname
uname -a

2. Display the current release level (OS Version) of the Unix operating

system.
uname -r

3. You will see Unix OS version on screen. To see architecture of Unix,
run:
uname -m

Full Stack Development 48 |

ADVERTISEMENT

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Here is outputs from my FreeBSD Unix server:

Examples

Although uname available on all Unix variants, there are other ways to display
OS versions and names. Let us look at operating system-specific information.

How to check FreeBSD unix version
Type the following command to determine the version and patch level:
freebsd-version
freebsd-version -k
freebsd-version -r
freebsd-version -u

Full Stack Development 49 |

https://www.cyberciti.biz/faq/how-to-find-out-freebsd-version-and-patch-level-number/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

A note about macOS

Show FreeBSD Unix Version

Open the macOS Terminal app and then type any one of the following

command to print macOS or Mac OS X version:
sw_vers
OR #

Full Stack Development 50 |

https://www.cyberciti.biz/faq/mac-osx-find-tell-operating-system-version-from-bash-prompt/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

system_profiler SPSoftwareDataType

HP-UX Unix

Use the swlist command as follows for determining your HP-UX Unix system
version:
swlist
swlist | grep -i oe
swlist HPUX*OE*
swlist HPUX*OE*
You will see something as follows:

OR

HPUX11i-TCOE B.11.23.0409 HP-UX Technical Computing OE Component

Full Stack Development 51 |

HPUX11i-OE-Ent B.11.23.0606 HP-UX Enterprise Operating Environment
Component

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Oracle Solaris 11 (5.11)

To see machine model from HP, type:
model
machinfo
getconf MACHINE_MODEL

Oracle or Sun Solaris OS

Verifying Operating system version on Oracle or Sun Solaris Unix is easy:
uname
uname -a
uname -r
use the cat command #
cat /etc/release

You will get info such as OR

.

IBM AIX Unix

To view the base level of the Unix system OS from IBM, type:
uname
uname -a
uname -r
oslevel
prtconf

See oslvel AIX command man-page for more info.

Summing up

The uname and other Unix command commands can help you determine
information about your Unix server or desktop, including its hardware type,
machine model, operating system version. The uname and other options
various. Hence, see the following man pages:
man uname

Full Stack Development 52 |

SPARC

Oracle Solaris 11.1

https://www.cyberciti.biz/faq/linux-unix-appleosx-bsd-cat-command-examples/?utm_source=Linux_Unix_Command&utm_medium=faq&utm_campaign=nixcmd
https://www.ibm.com/docs/en/aix/7.2?topic=o-oslevel-command

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Git & Github
Introduction to Git
For installation purposes on ubuntu, you can refer to this article: How
to Install, Configure and Use GIT on Ubuntu?

Git is a distributed version control system. So, What is a Version Control
System?

A version Control system is a system that maintains different versions
of your project when we work in a team or as an individual. (system
managing changes to files) As the project progresses, new features get
added to it. So, a version control system maintains all the different
versions of your project for you and you can roll back to any version
you want without causing any trouble to you for maintaining different
versions by giving names to it like MyProject, MyProjectWithFeature1,
etc.

Distributed Version control system means every collaborator(any
developer working on a team project)has a local repository of the
project in his/her local machine unlike central where team members
should have an internet connection to every time update their work to
the main central repository.

So, by distributed we mean: the project is distributed. A repository is an
area that keeps all your project files, images, etc. In terms of Github:
different versions of projects correspond to commits.
For more details on introduction to Github, you can refer: Introduction
to Github

Git Repository Structure
It consists of 4 parts:

Full Stack Development 53 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Working directory: This is your local directory where you make the
project (write code) and make changes to it.
Staging Area (or index): this is an area where you first need to put your
project before committing. This is used for code review by other team
members.
Local Repository: this is your local repository where you commit
changes to the project before pushing them to the central repository
on Github. This is what is provided by the distributed version control
system. This corresponds to the .git folder in our directory.
Central Repository: This is the main project on the central server, a
copy of which is with every team member as a local repository.
All the repository structure is internal to Git and is transparent to the
developer.

Some commands which relate to repository structure:

// transfers your project from working directory
// to staging area.
git add .

// transfers your project from staging area to
// Local Repository.
git commit -m "your message here"

// transfers project from local to central repository.
// (requires internet)
git push
Github
Github basically is a for-profit company owned by Microsoft, which
hosts Git repositories online. It helps users share their git repository
online, with other users, or access it remotely. You can also host a
public repository for free on Github.

Full Stack Development 54 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

User share their repository online for various reasons including but not
limited to project deployment, project sharing, open source
contribution, helping out the community and many such.

Accessing Github central repository via HTTPS or SSH
Here, transfer project means transfer changes as git is very lightweight
and works on changes in a project. It internally does the transfer by
using Lossless Compression Techniques and transferring compressed
files. Https is the default way to access Github central repository.

By git remote add origin http_url: remote means the remote central
repository. Origin corresponds to your central repository which you
need to define (hereby giving HTTPS URL) in order to push changes to
Github.

Via SSH: connect to Linux or other servers remotely.
If you access Github by ssh you don’t need to type your username and
password every time you push changes to GitHub.

Terminal commands:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"
This does the ssh key generation using RSA cryptographic algorithm.

eval "$(ssh-agent -s)" -> enable information about local login session.

ssh-add ~/.ssh/id_rsa -> add to ssh key.
cat ~/.ssh/id_rsa (use .pub file if not able to connect)
add this ssh key to github.

Now, go to github settings -> new ssh key -> create key

ssh -T git@github.com -> activate ssh key (test connection)

Full Stack Development 55 |

mailto:your_email@example.com
mailto:your_email@example.com
mailto:git@github.com

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Refresh your github Page.
Working with git – Important Git commands
Git user configuration (First Step)

git --version (to check git version)
git config --global user.name "your name here"
git config --global user.email "your email here"
These are the information attached to commits.

Initialize directory

git init

initializes your directory to work with git and makes a local repository.
.git folder is made (OR)

git clone http_url
This is done if we have an existing git repository and we want to copy
its content to a new place.

Connecting to the remote repository

git remote add origin http_url/ssh_url

connect to the central repo to push/pull. pull means adopting the
changes on the remote repository to your local repository. push merges
the changes from your local repository to the remote repository.

git pull origin master
One should always first pull contents from the central repo before
pushing so that you are updated with other team members’ work. It
helps prevent merge conflicts. Here, master means the master branch
(in Git).

Full Stack Development 56 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Stash Area in git

git stash
Whichever files are present in the staging area, it will move that files to
stash before committing it.

git stash pop
Whenever we want files for commit from stash we should use this
command.

git stash clear
By doing this, all files from stash area is been deleted.

Steps to add a file to a remote Repository:

First, your file is in your working directory, Move it to the staging area
by typing:

git add -A (for all files and folders)
#To add all files only in the current directory
git add .
git status: here, untracked files mean files that you haven’t added to
the staging area. Changes are not staged for commit means you have
staged the file earlier than you have made changes in that files in your
working directory and the changes need to be staged once more.
Changes ready to be committed: these are files that have been
committed and are ready to be pushed to the central repository.

git commit -a -m "message for commit"
-a: commit all files and for files that have been

staged earlier need not to be git add once more

-a option does that automatically.
git push origin master -> pushes your files to

Full Stack Development 57 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

github master branch
git push origin anyOtherBranch -> pushes any

other branch to github.

git log ; to see all your commits
git checkout commitObject(first 8 bits) file.txt->
revert back to this previous commit for file file.txt
Previous commits m=ight be seen through the git log command.

HEAD -> pointer to our latest commit.
Ignoring files while committing

In many cases, the project creates a lot of logs and other irrelevant files
which are to be ignored. So to ignore those files, we have to put their
names in“.gitignore” file.

touch .gitignore
echo "filename.ext" >>.gitignore
#to ignore all files with .log extension
echo "*.log" > .gitignore
Now the filenames written in the .gitignore file would be ignored while
pushing a new commit. To get the changes between commits, commit,
and working tree.

git diff
‘git diff’ command compares the staging area with the working
directory and tells us the changes made. It compares the earlier
information as well as the current modified information.

Branching in Git

create branch ->
git branch myBranch
or

Full Stack Development 58 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

git checkout -b myBranch -> make and switch to the
branch myBranch

Do the work in your branch. Then,

git checkout master ; to switch back to master branch
Now, merge contents with your myBranch By:

git merge myBranch (writing in master branch)
This merger makes a new commit.

Another way

git rebase myBranch
This merges the branch with the master in a serial fashion. Now,

git push origin master
Contributing to Open Source
Open Source might be considered as a way where user across the globe
may share their opinions, customizations or work together to solve an
issue or to complete the desired project together. Many companies
host there repositories online on Github to allow access to developers
to make changes to their product. Some companies(not necessarily all)
rewards their contributors in different ways.

You can contribute to any open source project on Github by forking it,
making desired changes to the forked repository, and then opening a
pull request. The project owner will review your project and will ask to
improve it or will merge it.

Full Stack Development 59 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Javascript basics OOPS:
As JavaScript is widely used in Web Development, in this article we will
explore some of the Object Oriented mechanisms supported
by JavaScript to get the most out of it. Some of the common interview

questions in JavaScript on OOPS include:

 How is Object-Oriented Programming implemented in
JavaScript?

 How does it differ from other languages?
 Can you implement Inheritance in JavaScript?

and so on…

There are certain features or mechanisms which make a Language
Object-Oriented like:

OOPs Concept in JavaScript

Object Classes Encapsulation

Abstraction Inheritance Polymorphism

Let’s dive into the details of each one of them and see how they are
implemented in JavaScript.

Object: An Object is a unique entity that
contains properties and methods. For example “a car” is a real-life

Object, which has some characteristics like color, type, model, and
horsepower and performs certain actions like driving. The characteristics

Full Stack Development 60 |

UNIT - II
Frontend Development: Javascript basics OOPS Aspects of

JavaScript Memory usage and Functions in JS AJAX for data

exchange with server jQuery Framework jQuery events, UI

components etc. JSON data format.

https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Object
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Classes
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Encapsulation
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Abstraction
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Inheritance
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/#Polymorphism
https://www.geeksforgeeks.org/objects-in-javascript/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

of an Object are called Properties in Object-Oriented Programming and
the actions are called methods. An Object is an instance of a class.

Objects are everywhere in JavaScript, almost every element is an Object
whether it is a function, array, or string.
Note: A Method in javascript is a property of an object whose value is a

function.
The object can be created in two ways in JavaScript:

 Object Literal
 Object Constructor

Example: Using an Object Literal.

// Defining object

let person = {

first_name:'Mukul',

last_name: 'Latiyan',

//method

getFunction : function(){

return (`The name of the person is

${person.first_name} ${person.last_name}`)

},

//object within object

phone_number : {

mobile:'12345',

landline:'6789'

}

}

console.log(person.getFunction());

console.log(person.phone_number.landline);

Output:

E
xample: Using an Object Constructor.

Full Stack Development 61 |

 Javascript

 Javascript

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Using a constructor

function person(first_name,last_name){

this.first_name = first_name;

this.last_name = last_name;

}

// Creating new instances of person object

let person1 = new person('Mukul','Latiyan');

let person2 = new person('Rahul','Avasthi');

console.log(person1.first_name);

console.log(`${person2.first_name} ${person2.last_name}`);

Output:

N
ote: The JavaScript Object.create() Method creates a new object, using
an existing object as the prototype of the newly created object.
Example:

// Object.create() example a

// simple object with some properties

const coder = {

isStudying : false,

printIntroduction : function(){

console.log(`My name is ${this.name}. Am I

studying?: ${this.isStudying}.`)

}

}

// Object.create() method

const me = Object.create(coder);

// "name" is a property set on "me", but not on "coder"

me.name = 'Mukul';

// Inherited properties can be overwritten

me.isStudying = true;

Full Stack Development 62 |

 Javascript

https://www.geeksforgeeks.org/object-create-javascript/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

me.printIntroduction();

Output:

Classes: Classes are blueprints of an Object. A class can have many

Objects because the class is a template while Objects are instances of

the class or the concrete implementation.

Before we move further into implementation, we should know unlike other
Object Oriented languages there are no classes in JavaScript we have
only Object. To be more precise, JavaScript is a prototype-based Object
Oriented Language, which means it doesn’t have classes, rather it defines
behaviors using a constructor function and then reuses it using the
prototype.
Note: Even the classes provided by ECMA2015 are objects.
JavaScript classes, introduced in ECMAScript 2015, are primarily
syntactical sugar over JavaScript’s existing prototype-based inheritance.

The class syntax is not introducing a new object-oriented inheritance
model to JavaScript. JavaScript classes provide a much simpler and
clearer syntax to create objects and deal with inheritance.

-Mozilla Developer Network

Example: Let’s use ES6 classes then we will look at the traditional way of

defining an Object and simulate them as classes.

// Defining class using es6

class Vehicle {

constructor(name, maker, engine) {

this.name = name;

this.maker = maker;

this.engine = engine;

}

getDetails(){

return (`The name of the bike is ${this.name}.`)

Full Stack Development 63 |

 Javascript

https://www.geeksforgeeks.org/javascript-classes/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

}

}

// Making object with the help of the constructor

let bike1 = new Vehicle('Hayabusa', 'Suzuki', '1340cc');

let bike2 = new Vehicle('Ninja', 'Kawasaki', '998cc');

console.log(bike1.name); // Hayabusa

console.log(bike2.maker); // Kawasaki

console.log(bike1.getDetails());

Output:

Example: Traditional Way of defining an Object and simulating them as

classes.

// Defining class in a Traditional Way.

function Vehicle(name,maker,engine){

this.name = name,

this.maker = maker,

this.engine = engine

};

Vehicle.prototype.getDetails = function(){

console.log('The name of the bike is '+ this.name);

}

let bike1 = new Vehicle('Hayabusa','Suzuki','1340cc');

let bike2 = new Vehicle('Ninja','Kawasaki','998cc');

console.log(bike1.name);

console.log(bike2.maker);

console.log(bike1.getDetails());

Output:

Full Stack Development 64 |

 Javascript

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

As seen in the above example it is much simpler to define and reuse

objects in ES6. Hence, we would be using ES6 in all of our examples.

Abstraction: Abstraction means displaying only essential information and
hiding the details. Data abstraction refers to providing only essential
information about the data to the outside world, hiding the background
details or implementation.
Encapsulation: The process of wrapping properties and
functions within a single unit is known as encapsulation.
Example: Let’s understand encapsulation with an example.

// Encapsulation example

class person{

constructor(name,id){

this.name = name;

this.id = id;

}

add_Address(add){

this.add = add;

}

getDetails(){

console.log(`Name is ${this.name},

Address is: ${this.add}`);

}

}

let person1 = new person('Mukul',21);

person1.add_Address('Delhi');

person1.getDetails();

Output: In this example, we simply create a person Object using the
constructor, Initialize its properties and use its functions. We are not
bothered by the implementation details. We are working with an Object’s
interface without considering the implementation details.

Full Stack Development 65 |

 Javascript

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

S

ometimes encapsulation refers to the hiding of data or data
Abstraction which means representing essential features hiding the
background detail. Most of the OOP languages provide access modifiers
to restrict the scope of a variable, but there are no such access modifiers
in JavaScript, there are certain ways by which we can restrict the scope of
variables within the Class/Object.
Example:

// Abstraction example

function person(fname,lname){

let firstname = fname;

let lastname = lname;

let getDetails_noaccess = function(){

return (`First name is: ${firstname} Last

name is: ${lastname}`);

}

this.getDetails_access = function(){

return (`First name is: ${firstname}, Last

name is: ${lastname}`);

}

}

let person1 = new person('Mukul','Latiyan');

console.log(person1.firstname);

console.log(person1.getDetails_noaccess);

console.log(person1.getDetails_access());

Output: In this example, we try to access some
property(person1.firstname) and functions(person1.getDetails_noaccess)
but it returns undefined while there is a method that we can access from
the person object(person1.getDetails_access()). By changing the way we
define a function we can restrict its scope.

Full Stack Development 66 |

 Javascript

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Inheritance: It is a concept in which some properties and methods of an

Object are being used by another Object. Unlike most of the OOP
languages where classes inherit classes, JavaScript Objects inherit
Objects i.e. certain features (property and methods) of one object can be
reused by other Objects.
Example: Let’s understand inheritance and polymorphism with an

example.

// Inheritance example

class person{

constructor(name){

this.name = name;

}

// method to return the string

toString(){

return (`Name of person: ${this.name}`);

}

}

class student extends person{

constructor(name,id){

// super keyword for calling the above

// class constructor

super(name);

this.id = id;

}

toString(){

return (`${super.toString()},

Student ID: ${this.id}`);

}

}

let student1 = new student('Mukul',22);

console.log(student1.toString());

Output: In this example, we define a Person Object with certain

properties and methods and then we inherit the Person Object in the

Full Stack Development 67 |

 Javascript

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Student Object and use all the properties and methods of the person
Object as well as define certain properties and methods for the Student
Object.

N
ote: The Person and Student objects both have the same method (i.e
toString()), this is called Method Overriding. Method Overriding allows a
method in a child class to have the same name(polymorphism) and
method signature as that of a parent class.
In the above code, the super keyword is used to refer to the immediate
parent class’s instance variable.

Polymorphism: Polymorphism is one of the core concepts of object-oriented
programming languages. Polymorphism means the same function with
different signatures is called many times. In real life, for example, a boy at
the same time may be a student, a class monitor, etc. So a boy can
perform different operations at the same time. Polymorphism can be
achieved by method overriding and method overloading

Functions in JS AJAX

What is Ajax?

Ajax stands for Asynchronous Javascript And Xml. Ajax is just a means of
loading data from the server and selectively updating parts of a web page
without reloading the whole page.

Basically, what Ajax does is make use of the browser's built-in
XMLHttpRequest (XHR) object to send and receive information to and
from a web server asynchronously, in the background, without blocking
the page or interfering with the user's experience.

Full Stack Development 68 |

https://www.geeksforgeeks.org/polymorphism-in-javascript/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Ajax has become so popular that you hardly find an application that
doesn't use Ajax to some extent. The example of some large-scale Ajax-
driven online applications are: Gmail, Google Maps, Google Docs,
YouTube, Facebook, Flickr, and so many other applications.

Note: Ajax is not a new technology, in fact, Ajax is not even really a
technology at all. Ajax is just a term to describe the process of exchanging
data from a web server asynchronously through JavaScript, without
refreshing the page.

Tip: Don't get confused by the term X (i.e. XML) in AJAX. It is only there
for historical reasons. Other data exchange format such as JSON, HTML,
or plain text can be used instead of XML.

Understanding How Ajax Works

To perform Ajax communication JavaScript uses a special object built into
the browser—an XMLHttpRequest (XHR) object—to make HTTP requests
to the server and receive data in response.

All modern browsers (Chrome, Firefox, IE7+, Safari, Opera) support the
XMLHttpRequest object.

The following illustrations demonstrate how Ajax communication works:

Ajax Illustration

Full Stack Development 69 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Since Ajax requests are usually asynchronous, execution of the script
continues as soon as the Ajax request is sent, i.e. the browser will not halt
the script execution until the server response comes back.

In the following section we'll discuss each step involved in this process
one by one:

Sending Request and Retrieving the Response

Before you perform Ajax communication between client and server, the
first thing you must do is to instantiate an XMLHttpRequest object, as
shown below:

var request = new XMLHttpRequest();

Now, the next step in sending the request to the server is to instantiating
the newly-created request object using the open() method of the
XMLHttpRequest object.

The open() method typically accepts two parameters— the HTTP request
method to use, such as "GET", "POST", etc., and the URL to send the
request to, like this:

request.open("GET", "info.txt"); -Or- request.open("POST", "add-
user.php");

Tip: The file can be of any kind, like .txt or .xml, or server-side scripting
files, like .php or .asp, which can perform some actions on the server (e.g.
inserting or reading data from database) before sending the response
back to the client.

Full Stack Development 70 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

And finally send the request to the server using the send() method of the
XMLHttpRequest object.

request.send(); -Or- request.send(body);

Note: The send() method accepts an optional body parameter which allow
us to specify the request's body. This is primarily used for HTTP POST
requests, since the HTTP GET request doesn't have a request body, just
request headers.

The GET method is generally used to send small amount of data to the
server. Whereas, the POST method is used to send large amount of data,
such as form data.

In GET method, the data is sent as URL parameters. But, in POST
method, the data is sent to the server as a part of the HTTP request body.
Data sent through POST method will not visible in the URL.

See the chapter on HTTP GET vs. POST for a detailed comparison of
these two methods.

In the following section we'll take a closer look at how Ajax requests
actually works.

Performing an Ajax GET Request

The GET request is typically used to get or retrieve some kind of
information from the server that doesn't require any manipulation or
change in database, for example, fetching search results based on a term,
fetching user details based on their id or name, and so on.

Full Stack Development 71 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The following example will show you how to make an Ajax GET request in
JavaScript.

ExampleTry this code »

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>JavaScript Ajax GET Demo</title>

<script>

function displayFullName() {

// Creating the XMLHttpRequest object

var request = new XMLHttpRequest();

// Instantiating the request object

request.open("GET", "greet.php?fname=John&lname=Clark");

// Defining event listener for readystatechange event

request.onreadystatechange = function() {

// Check if the request is compete and was successful

if(this.readyState === 4 && this.status === 200) {

Full Stack Development 72 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Inserting the response from server into an HTML element

document.getElementById("result").innerHTML =
this.responseText;

}

};

// Sending the request to the server

request.send();

}

</script>

</head>

<body>

<div id="result">

<p>Content of the result DIV box will be replaced by the server
response</p>

</div>

<button type="button" onclick="displayFullName()">Display Full
Name</button>

</body>

</html>

When the request is asynchronous, the send() method returns
immediately after sending the request. Therefore you must check where
the response currently stands in its lifecycle before processing it using the
readyState property of the XMLHttpRequest object.

Full Stack Development 73 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The readyState is an integer that specifies the status of an HTTP request.
Also, the function assigned to the onreadystatechange event handler
called every time the readyState property changes. The possible values of
the readyState property are summarized below.

Value State Description

0 UNSENT An XMLHttpRequest object has been created, but the
open() method hasn't been called yet (i.e. request not initialized).

1 OPENED The open() method has been called (i.e. server
connection established).

2 HEADERS_RECEIVED The send() method has been called (i.e.
server has received the request).

3 LOADING The server is processing the request.

4 DONE The request has been processed and the response is
ready.

Note: Theoretically, the readystatechange event should be triggered every
time the readyState property changes. But, most browsers do not fire this
event when readyState changes to 0 or 1. However, all browsers fire this
event when readyState changes to 4 .

The status property returns the numerical HTTP status code of the
XMLHttpRequest's response. Some of the common HTTP status codes
are listed below:

200 — OK. The server successfully processed the request.

404 — Not Found. The server can't find the requested page.

Full Stack Development 74 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

503 — Service Unavailable. The server is temporarily unavailable.

Please check out the HTTP status codes reference for a complete list of
response codes.

Here's the code from our "greet.php" file that simply creates the full name
of a person by joining their first name and last name and outputs a
greeting message.

ExampleDownload

<?php

if(isset($_GET["fname"]) && isset($_GET["lname"])) {

$fname = htmlspecialchars($_GET["fname"]);

$lname = htmlspecialchars($_GET["lname"]);

// Creating full name by joining first and last name

$fullname = $fname . " " . $lname;

// Displaying a welcome message

echo "Hello, $fullname! Welcome to our website.";

} else {

echo "Hi there! Welcome to our website.";

}

?>

Full Stack Development 75 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Performing an Ajax POST Request

The POST method is mainly used to submit a form data to the web server.

The following example will show you how to submit form data to the server
using Ajax.

ExampleTry this code »

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>JavaScript Ajax POST Demo</title>

<script>

function postComment() {

// Creating the XMLHttpRequest object

var request = new XMLHttpRequest();

// Instantiating the request object

request.open("POST", "confirmation.php");

// Defining event listener for readystatechange event

request.onreadystatechange = function() {

Full Stack Development 76 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Check if the request is compete and was successful

if(this.readyState === 4 && this.status === 200) {

// Inserting the response from server into an HTML element

document.getElementById("result").innerHTML =
this.responseText;

}

};

// Retrieving the form data

var myForm = document.getElementById("myForm");

var formData = new FormData(myForm);

// Sending the request to the server

request.send(formData);

}

</script>

</head>

<body>

<form id="myForm">

<label>Name:</label>

<div><input type="text" name="name"></div>

Full Stack Development 77 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

<label>Comment:</label>

<div><textarea name="comment"></textarea></div>

<p><button type="button" onclick="postComment()">Post
Comment</button></p>

</form>

<div id="result">

<p>Content of the result DIV box will be replaced by the server
response</p>

</div>

</body>

</html>

If you are not using the FormData object to send form data, for example, if
you're sending the form data to the server in the query string format, i.e.
request.send(key1=value1&key2=value2) then you need to explicitly set
the request header using setRequestHeader() method, like this:

request.setRequestHeader("Content-type", "application/x-www-form-
urlencoded");

The setRequestHeader() method, must be called after calling open(), but
before calling send().

Some common request headers are: application/x-www-form-urlencoded,
multipart/form-data, application/json, application/xml, text/plain, text/html,
and so on.

Full Stack Development 78 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Note: The FormData object provides an easy way to construct a set of
key/value pairs representing form fields and their values which can be
sent using XMLHttpRequest.send() method. The transmitted data is in the
same format that the form's submit() method would use to send the data if
the form's encoding type were set to multipart/form-data.

Here's the code of our "confirmation.php" file that simply outputs the
values submitted by the user.

ExampleDownload

<?php

if($_SERVER["REQUEST_METHOD"] == "POST") {

$name = htmlspecialchars(trim($_POST["name"]));

$comment = htmlspecialchars(trim($_POST["comment"]));

// Check if form fields values are empty

if(!empty($name) && !empty($comment)) {

echo "<p>Hi, $name. Your comment has been received
successfully.<p>";

echo "<p>Here's the comment that you've entered:
$comment</p>";

} else {

echo "<p>Please fill all the fields in the form!</p>";

}

} else {

Full Stack Development 79 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

echo "<p>Something went wrong. Please try again.</p>";

}

?>

For security reasons, browsers do not allow you to make cross-domain
Ajax requests. This means you can only make Ajax requests to URLs from
the same domain as the original page, for example, if your application is
running on the domain "mysite.com", you cannot make Ajax request to
"othersite.com" or any other domain. This is commonly known as same
origin policy.

JSON data format.

What is JSON?

 JSON stands for JavaScript Object Notation

 JSON is a lightweight data-interchange format
 JSON is plain text written in JavaScript object notation
 JSON is used to send data between computers

 JSON is language independent *

The JSON format was originally specified by Douglas Crockford.

Full Stack Development 80 |

*

The JSON syntax is derived from JavaScript object notation, but the JSON
format is text only.

Code for reading and generating JSON exists in many programming languages.

http://www.crockford.com/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Why Use JSON?

The JSON format is syntactically similar to the code for creating JavaScript
objects. Because of this, a JavaScript program can easily convert JSON data
into JavaScript objects.

Since the format is text only, JSON data can easily be sent between computers,
and used by any programming language.

JavaScript has a built in function for converting JSON strings into JavaScript
objects:

JSON.parse()

JavaScript also has a built in function for converting an object into a JSON

string:

JSON.stringify()

Full Stack Development 81 |

You can receive pure text from a server and use it as a JavaScript object.

You can send a JavaScript object to a server in pure text format.

You can work with data as JavaScript objects, with no complicated parsing and
translations.

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Storing Data

When storing data, the data has to be a certain format, and regardless of where
you choose to store it, text is always one of the legal formats.

JSON makes it possible to store JavaScript objects as text.

JSON Example

This example is a JSON string:

'{"name":"John", "age":30, "car":null}'

It defines an object with 3 properties:

 name
 age

 car

Each property has a value.

If you parse the JSON string with a JavaScript program, you can access the
data as an object:

let personName = obj.name;
let personAge = obj.age;

Full Stack Development 82 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Introduction to ReactJS
React is a popular JavaScript library used for web development. React.js or ReactJS or React are different ways

to represent ReactJS. Today’s many large-scale companies (Netflix, Instagram, to name a few) also use React JS.

There are many advantages of using this framework over other frameworks, and It’s ranking under the top 10

programming languages for the last few years under various language ranking indices.

What is ReactJS?

Full Stack Development 83 |

UNIT - III

REACT JS: Introduction to React React Router and Single Page Applications React

Forms, Flow Architecture and Introduction to Redux More Redux and Client-

Server Communication

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

React.js is a front-end JavaScript framework developed by Facebook. To build composable user interfaces

predictably and efficiently using declarative code, we use React. It’s an open -source and component-based

framework responsible for creating the application’s view layer.

● ReactJs follows the Model View Controller (MVC) architecture, and the view layer is accountable for

handling mobile and web apps.

● React is famous for building single-page applications and mobile apps.

Let’s take an example: Look at the Facebook page, which is entirely built on React, to understand how react

does works.

As the figure shows, ReactJS divides the UI into multiple components, making the code easier to debug. This

way, each function is assigned to a specific component, and it produces some HTML which is rendered as output

by the DOM.

ReactJS History:

Jordan Walke created React, who worked as a software engineer in Facebook has first released an early React

prototype called "FaxJS.”

In 2011, React was first deployed on Facebook's News Feed, and later in 2012 on Instagram.

As the figure shows, ReactJS divides the UI into multiple components, making the code easier to debug. This

way, each function is assigned to a specific component, and it produces some HTML which is rendered as output

by the DOM.

ReactJS History:

Jordan Walke created React, who worked as a software engineer in Facebook has first released an early React

prototype called "FaxJS.”

In 2011, React was first deployed on Facebook's News Feed, and later in 2012 on Instagram.

Full Stack Development 84 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The current version of React.JS is V17.0.1.

Why do people choose to program with React?

There are various reasons why you should choose ReactJS as a primary tool for website UI development. Here,

we highlight the most notable ones and explain why these specifics are so important:

● Fast - Feel quick and responsive through the Apps made in React can handle complex updates.

● Modular - Allow you to write many smaller, reusable files instead of writing large, dense files of code.

The modularity of React is an attractive solution for JavaScript's visibility issues.

● Scalable - React performs best in the case of large programs that display a lot of data changes.

● Flexible - React approaches differently by breaking them into components while building user

interfaces. This is incredibly important in large applications.

● Popular - ReactJS gives better performance than other JavaScript languages due to t’s implementation

of a virtual DOM.

● Easy to learn - Since it requires minimal understanding of HTML and JavaScript, the learning curve is

low.

● Server-side rendering and SEO friendly - ReactJS websites are famous for their server-side rendering

feature. It makes apps faster and much better for search engine ranking in comparison to products with

client-side rendering. React even produces more opportunities for website SEO and can occupy higher

positions on the search result’s page.

● Reusable UI components - React improves development and debugging processes.
● Community - The number of tools and extensions available for ReactJS developers is tremendous. Along

with impressive out-of-box functionalities, more opportunities emerge once you discover how giant the

React galaxy is. React has a vibrant community and is supported by Facebook. Hence, it’s a reliable tool

for website development.

ReactJS Features:

1. JSX - JavaScript Syntax Extension

JSX is a preferable choice for many web developers. It isn't necessary to use JSX in React development, but

there is a massive difference between writing react.js documents in JSX and JavaScript. JSX is a syntax extension

to JavaScript. By using that, we can write HTML structures in the same file that contains JavaScript code.

2. Unidirectional Data Flow and Flux

Full Stack Development 85 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

React.js is designed so that it will only support data that is flowing downstream, in one direction. If the data has

to flow in another direction, you will need additional features.

React contains a set of immutable values passed to the component renderer as properties in HTML tags. The

components cannot modify any properties directly but support a call back function to do modifications.

3. Virtual Document Object Model (VDOM)

React contains a lightweight representation of real DOM in the memory called Virtual DOM. Manipulating real

DOM is much slower compared to VDOM as nothing gets drawn on the screen. When any object’s state changes,

VDOM modifies only that object in real DOM instead of updating whole objects.

That makes things move fast, particularly compared with other front-end technologies that have to update each

object even if only a single object changes in the web application.

Full Stack Development 86 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

4. Extensions

React supports various extensions for application architecture. It supports server-side rendering, Flux, and

Redux extensively in web app development. React Native is a popular framework developed from React for

creating cross-compatible mobile apps.

5. Debugging

Testing React apps is easy due to large community support. Even Facebook provides a small browser extension

that makes React debugging easier and faster.

Next, let’s understand some essential concepts of ReactJS.

Building Components of React - Components, State, Props, and Keys.

1. ReactJS Components

Components are the heart and soul of React. Components (like JavaScript functions) let you split the UI into

independent, reusable pieces and think about each piece in isolation.

Components are building blocks of any React application. Every component has its structures, APIs, and

methods.

In React, there are two types of components, namely stateless functional and stateful class.

Full Stack Development 87 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

● Functional Components - These components have no state of their own and contain only a render

method. They are simply Javascript functions that may or may not receive data as parameters.

Stateless functional components may derive data from other components as properties (props).

An example of representing functional component is shown below:

● Class Components - These components are more complex than functional components. They can

manage their state and to return JSX on the screen have a separate render method. You can pass data

from one class to other class components.

An example of representing class component is shown below:

2. React State

A state is a place from where the data comes. The state in a component can change over time, and whenever it

changes, the component re-renders.

A change in a state can happen as a response to system-generated events or user action, and these changes

define the component’s behavior and how it will render.

Full Stack Development 88 |

function WelcomeMessage(props) {

return <h1>Welcome to the , {props.name}</h1>;

}

class MyComponent extends React.Component {

render() {

return (

<div>This is the main component.</div>

);

}

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The state object is initialized in the constructor, and it can store multiple properties.

For changing the state object value, use this.setState() function.

To perform a merge between the new and the previous state, use the setState() function.

3. React Props

Props stand for properties, and they are read-only components.

Both Props and State are plain JavaScript objects and hold data that influence the output of render. And they

are different in one way: State is managed within the component (like variable declaration within a function),

whereas props get passed to the component (like function parameters).

Props are immutable, and this is why the component of a container should describe the state that can be

changed and updated, while the child components should only send data from the state using properties.

Full Stack Development 89 |

class Greetings extends React.Component {

state = {

name: "World"

};

updateName() {

this.setState({ name: "Mindmajix" });

}

render() {

return(

<div>

{this.state.name}

</div>

)

}

}

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

4. React Keys

In React, Keys are useful when working with dynamically created components. Setting the key value will keep

your component uniquely identified after the change.

They help React in identifying the items which have changed, are removed, or added.

In summary, State, Props, keys, and components are the few fundamental React concepts that you need to be

familiar with before working on it.

React Router

Routing is a process in which a user is directed to different pages based on their action or

request. ReactJS Router is mainly used for developing Single Page Web Applications. React

Router is used to define multiple routes in the application. When a user types a specific URL into

the browser, and if this URL path matches any 'route' inside the router file, the user will be

redirected to that particular route.

React Router is a standard library system built on top of the React and used to create routing in

the React application using React Router Package. It provides the synchronous URL on the

browser with data that will be displayed on the web page. It maintains the standard structure and

behavior of the application and mainly used for developing single page web applications.

Need of React Router

React Router plays an important role to display multiple views in a single page application.

Without React Router, it is not possible to display multiple views in React applications. Most of

the social media websites like Facebook, Instagram uses React Router for rendering multiple

views.

React Router Installation

React contains three different packages for routing. These are:

1. react-router: It provides the core routing components and functions for the React

Router applications.

2. react-router-native: It is used for mobile applications.

3. react-router-dom: It is used for web applications design.

Full Stack Development 90 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

It is not possible to install react-router directly in your application. To use react routing, first, you

need to install react-router-dom modules in your application. The below command is used to

install react router dom.

1. $ npm install react-router-dom --save

Components in React Router

There are two types of router components:

● <BrowserRouter>: It is used for handling the dynamic URL.

● <HashRouter>: It is used for handling the static request.

Example

Step-1: In our project, we will create two more components along with App.js, which is already

present.

About.js

Full Stack Development 91 |

import React from 'react'

class About extends React.Component {

render() {

return <h1>About</h1>

}

}

export default About

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Contact.js

App.js

Full Stack Development 92 |

import React from 'react'

class About extends React.Component {

render() {

return <h1>About</h1>

}

}

export default About

import React from 'react'

class Contact extends React.Component {

render() {

return <h1>Contact</h1>

}

}

export default Contact

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Step-2: For Routing, open the index.js file and import all the three component files in it. Here,
you need to import line: import { Route, Link, BrowserRouter as Router } from 'react-

router-dom' which helps us to implement the Routing. Now, our index.js file looks like below.

What is Route?

It is used to define and render component based on the specified path. It will accept components

and render to define what should be rendered.

Index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { Route, Link, BrowserRouter as Router } from 'react-router-dom'

import './index.css';

Full Stack Development 93 |

import React from 'react'

class App extends React.Component {

render() {

return (

<div>

<h1>Home</h1>

</div>

)

}

}

export default App

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

import App from './App';

import About from './about'

import Contact from './contact'

const routing = (

<Router>

<div>

<h1>React Router Example</h1>

<Route path="/" component={App} />

<Route path="/about" component={About} />

<Route path="/contact" component={Contact} />

</div>

</Router>

)

ReactDOM.render(routing, document.getElementById('root'));

Step-3: Open command prompt, go to your project location, and then type npm start. You will

get the following screen.

Now, if you enter manually in the browser: localhost:3000/about, you will see About

component is rendered on the screen.

Full Stack Development 94 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Step-4: In the above screen, you can see that Home component is still rendered. It is because the

home path is '/' and about path is '/about', so you can observe that slash is common in both paths

which render both components. To stop this behavior, you need to use the exact prop. It can be

seen in the below example.

Index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { Route, Link, BrowserRouter as Router } from 'react-router-dom'

import './index.css';

import App from './App';

import About from './about'

import Contact from './contact'

const routing = (

<Router>

<div>

<h1>React Router Example</h1>

<Route exact path="/" component={App} />

<Route path="/about" component={About} />

<Route path="/contact" component={Contact} />

Full Stack Development 95 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

</div>

</Router>

)

ReactDOM.render(routing, document.getElementById('root'));

Output

Adding Navigation using Link component

Sometimes, we want to need multiple links on a single page. When we click on any of that
particular Link, it should load that page which is associated with that path without reloading the

web page. To do this, we need to import <Link> component in the index.js file.

What is < Link> component?

This component is used to create links which allow to navigate on different URLs and render its

content without reloading the webpage.

Example

Index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { Route, Link, BrowserRouter as Router } from 'react-router-dom'

import './index.css';

import App from './App';

import About from './about'

import Contact from './contact'

Full Stack Development 96 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

const routing = (

<Router>

<div>

<h1>React Router Example</h1>

<Link to="/">Home</Link>

<Link to="/about">About</Link>

<Link to="/contact">Contact</Link>

<Route exact path="/" component={App} />

<Route path="/about" component={About} />

<Route path="/contact" component={Contact} />

</div>

</Router>

Full Stack Development 97 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

)

ReactDOM.render(routing, document.getElementById('root'));

Output

After adding Link, you can see that the routes are rendered on the screen. Now, if you click on

the About, you will see URL is changing and About component is rendered.

Now, we need to add some styles to the Link. So that when we click on any particular link, it can

be easily identified which Link is active. To do this react router provides a new trick NavLink

instead of Link. Now, in the index.js file, replace Link from Navlink and add properties

activeStyle. The activeStyle properties mean when we click on the Link, it should have a

specific style so that we can differentiate which one is currently active.

import React from 'react';

import ReactDOM from 'react-dom';

import { BrowserRouter as Router, Route, Link, NavLink } from 'react-router-dom'

import './index.css';

import App from './App';

import About from './about'

import Contact from './contact'

Full Stack Development 98 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

const routing = (

<Router>

<div>

<h1>React Router Example</h1>

<NavLink to="/" exact activeStyle={

{color:'red'}

}>Home</NavLink>

<NavLink to="/about" exact activeStyle={

{color:'green'}

}>About</NavLink>

<NavLink to="/contact" exact activeStyle={

{color:'magenta'}

}>Contact</NavLink>

Full Stack Development 99 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

<Route exact path="/" component={App} />

<Route path="/about" component={About} />

<Route path="/contact" component={Contact} />

</div>

</Router>

)

ReactDOM.render(routing, document.getElementById('root'));

Output

When we execute the above program, we will get the following screen in which we can see that

Home link is of color Red and is the only currently active link.

Now, when we click on About link, its color shown green that is the currently active link.

<Link> vs <NavLink>

The Link component allows navigating the different routes on the websites, whereas NavLink

component is used to add styles to the active routes.

Benefits Of React Router

The benefits of React Router is given below:

Full Stack Development 100 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

● In this, it is not necessary to set the browser history manually.

● Link uses to navigate the internal links in the application. It is similar to the anchor tag.

● It uses Switch feature for rendering.

● The Router needs only a Single Child element.

● In this, every component is specified in .

React Forms

Forms are an integral part of any modern web application. It allows the users to interact with the

application as well as gather information from the users. Forms can perform many tasks that

depend on the nature of your business requirements and logic such as authentication of the user,

adding user, searching, filtering, booking, ordering, etc. A form can contain text fields, buttons,

checkbox, radio button, etc.

Creating Form

React offers a stateful, reactive approach to build a form. The component rather than the DOM

usually handles the React form. In React, the form is usually implemented by using controlled

components.

There are mainly two types of form input in React.

1. Uncontrolled component

2. Controlled component

Uncontrolled component

The uncontrolled input is similar to the traditional HTML form inputs. The DOM itself handles

the form data. Here, the HTML elements maintain their own state that will be updated when the

input value changes. To write an uncontrolled component, you need to use a ref to get form

values from the DOM. In other words, there is no need to write an event handler for every state

update. You can use a ref to access the input field value of the form from the DOM.

Full Stack Development 101 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Example

In this example, the code accepts a field username and company name in an uncontrolled

component.

1. import React, { Component } from 'react';

2. class App extends React.Component {

3. constructor(props) {

4. super(props);

5. this.updateSubmit = this.updateSubmit.bind(this);

6. this.input = React.createRef();7.

}

8. updateSubmit(event) {

9. alert('You have entered the UserName and CompanyName successfully.');

10. event.preventDefault();

11. }

12. render() {

13. return (

14. <form onSubmit={this.updateSubmit}>

15. <h1>Uncontrolled Form Example</h1>

16. <label>Name:

17. <input type="text" ref={this.input} />

18. </label>

19. <label>

20. CompanyName:

21. <input type="text" ref={this.input} />

22. </label>

23. <input type="submit" value="Submit" />

24. </form>

25.);

26. }

Full Stack Development 102 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

27. }

28. export default App;

Output

When you execute the above code, you will see the following screen.

After filling the data in the field, you get the message that can be seen in the below screen.

Controlled Component

In HTML, form elements typically maintain their own state and update it according to the user

input. In the controlled component, the input form element is handled by the component rather

than the DOM. Here, the mutable state is kept in the state property and will be updated only with

setState() method.

Controlled components have functions that govern the data passing into them on every

onChange event, rather than grabbing the data only once, e.g., when you click a submit button.

This data is then saved to state and updated with setState() method. This makes component have

better control over the form elements and data.

A controlled component takes its current value through props and notifies the changes through

callbacks like an onChange event. A parent component "controls" this changes by handling the

callback and managing its own state and then passing the new values as props to the controlled

component. It is also called as a "dumb component."

Full Stack Development 103 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Example

1. import React, { Component } from 'react';

2. class App extends React.Component {

3. constructor(props) {

4. super(props);

5. this.state = {value: ''};

6. this.handleChange = this.handleChange.bind(this);

7. this.handleSubmit = this.handleSubmit.bind(this);8.

}

9. handleChange(event) {

10. this.setState({value: event.target.value});

11. }

12. handleSubmit(event) {

13. alert('You have submitted the input successfully: ' + this.state.value);

14. event.preventDefault();

15. }

16. render() {

17. return (

18. <form onSubmit={this.handleSubmit}>

19. <h1>Controlled Form Example</h1>

20. <label>

21. Name:

22. <input type="text" value={this.state.value}

onChange={this.handleChange} />

23. </label>

24. <input type="submit" value="Submit" />

25. </form>

26.);

27. }

28. }

Full Stack Development 104 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

29. export default App;

Output

When you execute the above code, you will see the following screen.

After filling the data in the field, you get the message that can be seen in the below screen.

Architecture of the React Application

React library is just UI library and it does not enforce any particular pattern to write a complex

application. Developers are free to choose the design pattern of their choice. React community

advocates certain design pattern. One of the patterns is Flux pattern. React library also provides

lot of concepts like Higher Order component, Context, Render props, Refs etc., to write better

code. React Hooks is evolving concept to do state management in big projects. Let us try to

understand the high level architecture of a React application.

Full Stack Development 105 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

● React app starts with a single root component.

● Root component is build using one or more component.

● Each component can be nested with other component to any level.

● Composition is one of the core concepts of React library. So, each component is

build by composing smaller components instead of inheriting one component

from another component.

● Most of the components are user interface components.

● React app can include third party component for specific purpose such as

routing, animation, state management, etc.

Full Stack Development 106 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

React Redux

Redux is an open-source JavaScript library used to manage application state. React uses Redux

for building the user interface. It was first introduced by Dan Abramov and Andrew Clark in

2015.

React Redux is the official React binding for Redux. It allows React components to read data

from a Redux Store, and dispatch Actions to the Store to update data. Redux helps apps to scale

by providing a sensible way to manage state through a unidirectional data flow model. React

Redux is conceptually simple. It subscribes to the Redux store, checks to see if the data which

your component wants have changed, and re-renders your component.

Redux was inspired by Flux. Redux studied the Flux architecture and omitted unnecessary

complexity.

● Redux does not have Dispatcher concept.

● Redux has an only Store whereas Flux has many Stores.

● The Action objects will be received and handled directly by Store.

Why use React Redux?

The main reason to use React Redux are:

● React Redux is the official UI bindings for react Application. It is kept up-to-date with

any API changes to ensure that your React components behave as expected.

● It encourages good 'React' architecture.

● It implements many performance optimizations internally, which allows to components

re-render only when it actually needs.

Redux Architecture

Full Stack Development 107 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The components of Redux architecture are explained below.

STORE: A Store is a place where the entire state of your application lists. It manages the status

of the application and has a dispatch(action) function. It is like a brain responsible for all moving

parts in Redux.

ACTION: Action is sent or dispatched from the view which are payloads that can be read by

Reducers. It is a pure object created to store the information of the user's event. It includes

information such as type of action, time of occurrence, location of occurrence, its coordinates,

and which state it aims to change.

REDUCER: Reducer read the payloads from the actions and then updates the store via the state

accordingly. It is a pure function to return a new state from the initial state.

React Redux Example

Full Stack Development 108 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

In this section, we will learn how to implements Redux in React application. Here, we provide a

simple example to connect Redux and React.

Step-1 Create a new react project using create-react-app command. I choose the project name:

"reactproject." Now, install Redux and React-Redux.

1. javatpoint@root:~/Desktop$ npx create-react-app reactproject

2. javatpoint@root:~/Desktop/reactproject$ npm install redux react-redux --save

Step-2 Create Files and Folders

In this step, we need to create folders and files for actions, reducers, components, and containers.

After creating folders and files, our project looks like as below image.

Step-3 Actions

It uses 'type' property to inform about data that should be sent to the Store. In this folder, we will

create two files: index.js and index.spec.js. Here, we have created an action creator that returns

our action and sets an id for every created item.

Index.js

1. let nextTodoId = 0

2. export const addTodo = text => ({

3. type: 'ADD_TODO',

4. id: nextTodoId++,

5. text

6. })

7.

Full Stack Development 109 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

8. export const setVisibilityFilter = filter => ({

9. type: 'SET_VISIBILITY_FILTER',

10. filter

11. })

12.

13. export const toggleTodo = id => ({

14. type: 'TOGGLE_TODO',

15. id

16. })

17.

18. export const VisibilityFilters = {

19. SHOW_ALL: 'SHOW_ALL',

20. SHOW_COMPLETED: 'SHOW_COMPLETED',

21. SHOW_ACTIVE: 'SHOW_ACTIVE'

22. }

Index.spec.js

1. import * as actions from './index'

2.

3. describe('todo actions', () => {

4. it('addTodo should create ADD_TODO action', () => {

5. expect(actions.addTodo('Use Redux')).toEqual({

6. type: 'ADD_TODO',

7. id: 0,

8. text: 'Use Redux'

9. })

10. })

11.

12. it('setVisibilityFilter should create SET_VISIBILITY_FILTER action', () => {

13. expect(actions.setVisibilityFilter('active')).toEqual({

Full Stack Development 110 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

14. type: 'SET_VISIBILITY_FILTER',

15. filter: 'active'

16. })

17. })

18.

19. it('toggleTodo should create TOGGLE_TODO action', () => {

20. expect(actions.toggleTodo(1)).toEqual({

21. type: 'TOGGLE_TODO',

22. id: 1

23. })

24. })

25. })

Step-4 Reducers

As we know, Actions only trigger changes in the app, and the Reducers specify those changes.

The Reducer is a function which takes two parameters 'Action' and 'State' to calculate and return

an updated State. It read the payloads from the 'Actions' and then updates the 'Store' via the State

accordingly.

In the given files, each Reducer managing its own part of the global State. The State parameter is

different for every Reducer and corresponds to the part of the 'State' it manages. When the app

becomes larger, we can split the Reducers into separate files and keep them completely

independent and managing different data domains.

Here, we are using 'combineReducers' helper function to add any new Reducers we might use in

the future.

index.js

1. import { combineReducers } from 'redux'

2. import todos from './todos'

3. import visibilityFilter from './visibilityFilter'

Full Stack Development 111 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

4.

5. export default combineReducers({

6. todos,

7. visibilityFilter

8. })

Todos.js

1. const todos = (state = [], action) => {

2. switch (action.type) {

3. case 'ADD_TODO':

4. return [

5.state,

6. {

7. id: action.id,

8. text: action.text,

9. completed: false

10. }

11.]

12. case 'TOGGLE_TODO':

13. return state.map(todo =>

14. (todo.id === action.id)

15. ? {. todo, completed: !todo.completed}

16. : todo

17.)

18. default:

19. return state

20. }

21. }

22. export default todos

Full Stack Development 112 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Todos.spec.js

1. import todos from './todos'

2.

3. describe('todos reducer', () => {

4. it('should handle initial state', () => {

5. expect(

6. todos(undefined, {})

7.).toEqual([])

8. })

9.

10. it('should handle ADD_TODO', () => {

11. expect(

12. todos([], {

13. type: 'ADD_TODO',

14. text: 'Run the tests',

15. id: 0

16. })

17.).toEqual([

18. {

19. text: 'Run the tests',

20. completed: false,

21. id: 0

22. }

23.])

24.

25. expect(

26. todos([

27. {

28. text: 'Run the tests',

29. completed: false,

Full Stack Development 113 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

30. id: 0

31. }

32.], {

33. type: 'ADD_TODO',

34. text: 'Use Redux',

35. id: 1

36. })

37.).toEqual([

38. {

39. text: 'Run the tests',

40. completed: false,

41. id: 0

42. }, {

43. text: 'Use Redux',

44. completed: false,

45. id: 1

46. }

47.])

48.

49. expect(

50. todos([

51. {

52. text: 'Run the tests',

53. completed: false,

54. id: 0

55. }, {

56. text: 'Use Redux',

57. completed: false,

58. id: 1

59. }

Full Stack Development 114 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

60.], {

61. type: 'ADD_TODO',

62. text: 'Fix the tests',

63. id: 2

64. })

65.).toEqual([

66. {

67. text: 'Run the tests',

68. completed: false,

69. id: 0

70. }, {

71. text: 'Use Redux',

72. completed: false,

73. id: 1

74. }, {

75. text: 'Fix the tests',

76. completed: false,

77. id: 2

78. }

79.])

80. })

81.

82. it('should handle TOGGLE_TODO', () => {

83. expect(

84. todos([

85. {

86. text: 'Run the tests',

87. completed: false,

88. id: 1

89. }, {

Full Stack Development 115 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

90. text: 'Use Redux',

91. completed: false,

92. id: 0

93. }

94.], {

95. type: 'TOGGLE_TODO',

96. id: 1

97. })

98.).toEqual([

99. {

100. text: 'Run the tests',

101. completed: true,

102. id: 1

103. }, {

104. text: 'Use Redux',

105. completed: false,

106. id: 0

107. }

108.])

109. })

110. })

VisibilityFilter.js

1. import { VisibilityFilters } from '../actions'

2.

3. const visibilityFilter = (state = VisibilityFilters.SHOW_ALL, action) => {

4. switch (action.type) {

5. case 'SET_VISIBILITY_FILTER':

6. return action.filter

7. default:

Full Stack Development 116 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

8. return state9.

}

10. }

11. export default visibilityFilter

Step-5 Components

It is a Presentational Component, which concerned with how things look such as markup, styles.

It receives data and invokes callbacks exclusively via props. It does not know where the data

comes from or how to change it. It only renders what is given to them.

App.js

It is the root component which renders everything in the UI.

1. import React from 'react'

2. import Footer from './Footer'

3. import AddTodo from '../containers/AddTodo'

4. import VisibleTodoList from '../containers/VisibleTodoList'

5.

6. const App = () => (

7. <div>

8. <AddTodo />

9. <VisibleTodoList />

10. <Footer />

11. </div>

12.)

13. export default App

Footer.js

It tells where the user changes currently visible todos.

1. import React from 'react'

Full Stack Development 117 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

2. import FilterLink from '../containers/FilterLink'

3. import { VisibilityFilters } from '../actions'

4.

5. const Footer = () => (

6. <p>

7. Show: <FilterLink filter={VisibilityFilters.SHOW_ALL}>All</FilterLink>

8. {', '}

9. <FilterLink filter={VisibilityFilters.SHOW_ACTIVE}>Active</FilterLink>

10. {', '}

11. <FilterLink

filter={VisibilityFilters.SHOW_COMPLETED}>Completed</FilterLink>

12. </p>

13.)

14. export default Footer

Link.js

It is a link with a callback.

1. import React from 'react'

2. import PropTypes from 'prop-types'

3.

4. const Link = ({ active, children, onClick }) => {

5. if (active) {

6. return {children}

7. }

8.

9. return (

10. <a

11. href=""

12. onClick={e => {

Full Stack Development 118 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

13. e.preventDefault()

14. onClick()

15. }}

16. >

17. {children}

18.

19.)

20. }

21.

22. Link.propTypes = {

23. active: PropTypes.bool.isRequired,

24. children: PropTypes.node.isRequired,

25. onClick: PropTypes.func.isRequired

26. }

27.

28. export default Link

Todo.js

It represents a single todo item which shows text.

1. import React from 'react'

2. import PropTypes from 'prop-types'

3.

4. const Todo = ({ onClick, completed, text }) => (

5. <li

6. onClick={onClick}

7. style={{

8. textDecoration: completed ? 'line-through' : 'none'

9. }}

10. >

Full Stack Development 119 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

11. {text}

12.

13.)

14.

15. Todo.propTypes = {

16. onClick: PropTypes.func.isRequired,

17. completed: PropTypes.bool.isRequired,

18. text: PropTypes.string.isRequired

19. }

20.

21. export default Todo

TodoList.js

It is a list to show visible todos{ id, text, completed }.

1. import React from 'react'

2. import PropTypes from 'prop-types'

3. import Todo from './Todo'

4.

5. const TodoList = ({ todos, onTodoClick }) => (

6.

7. {todos.map((todo, index) => (

8. <Todo key={index} {...todo} onClick={() => onTodoClick(index)} />

9.))}

10.

11.)

12.

13. TodoList.propTypes = {

14. todos: PropTypes.arrayOf(

15. PropTypes.shape({

Full Stack Development 120 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

16. id: PropTypes.number.isRequired,

17. completed: PropTypes.bool.isRequired,

18. text: PropTypes.string.isRequired

19. }).isRequired

20.).isRequired,

21. onTodoClick: PropTypes.func.isRequired

22. }

23. export default TodoList

Step-6 Containers

It is a Container Component which concerned with how things work such as data fetching,

updates State. It provides data and behavior to presentational components or other container

components. It uses Redux State to read data and dispatch Redux Action for updating data.

AddTodo.js

It contains the input field with an ADD (submit) button.

1. import React from 'react'

2. import { connect } from 'react-redux'

3. import { addTodo } from '../actions'

4.

5. const AddTodo = ({ dispatch }) => {

6. let input

7.

8. return (

9. <div>

10. <form onSubmit={e => {

11. e.preventDefault()

12. if (!input.value.trim()) {

13. return

14. }

Full Stack Development 121 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

15. dispatch(addTodo(input.value))

16. input.value = ''

17. }}>

18. <input ref={node => input = node} />

19. <button type="submit">

20. Add Todo

21. </button>

22. </form>

23. </div>

24.)

25. }

26. export default connect()(AddTodo)

FilterLink.js

It represents the current visibility filter and renders a link.

1. import { connect } from 'react-redux'

2. import { setVisibilityFilter } from '../actions'

3. import Link from '../components/Link'

4.

5. const mapStateToProps = (state, ownProps) => ({

6. active: ownProps.filter === state.visibilityFilter

7. })

8.

9. const mapDispatchToProps = (dispatch, ownProps) => ({

10. onClick: () => dispatch(setVisibilityFilter(ownProps.filter))

11. })

12.

13. export default connect(

14. mapStateToProps,

Full Stack Development 122 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

15. mapDispatchToProps

16.)(Link)

VisibleTodoList.js

It filters the todos and renders a TodoList.

1. import { connect } from 'react-redux'

2. import { toggleTodo } from '../actions'

3. import TodoList from '../components/TodoList'

4. import { VisibilityFilters } from '../actions'

5.

6. const getVisibleTodos = (todos, filter) => {

7. switch (filter) {

8. case VisibilityFilters.SHOW_ALL:

9. return todos

10. case VisibilityFilters.SHOW_COMPLETED:

11. return todos.filter(t => t.completed)

12. case VisibilityFilters.SHOW_ACTIVE:

13. return todos.filter(t => !t.completed)

14. default:

15. throw new Error('Unknown filter: ' + filter)

16. }

17. }

18.

19. const mapStateToProps = state => ({

20. todos: getVisibleTodos(state.todos, state.visibilityFilter)

21. })

22.

23. const mapDispatchToProps = dispatch => ({

24. toggleTodo: id => dispatch(toggleTodo(id))

Full Stack Development 123 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

25. })

26.

27. export default connect(

28. mapStateToProps,

29. mapDispatchToProps

30.)(TodoList)

Step-7 Store

All container components need access to the Redux Store to subscribe to it. For this, we need to

pass it(store) as a prop to every container component. However, it gets tedious. So we

recommend using special React Redux component called which make the store available to all

container components without passing it explicitly. It used once when you render the root

component.

index.js

1. import React from 'react'

2. import { render } from 'react-dom'

3. import { createStore } from 'redux'

4. import { Provider } from 'react-redux'

5. import App from './components/App'

6. import rootReducer from './reducers'

7.

8. const store = createStore(rootReducer)

9.

10. render(

11. <Provider store={store}>

12. <App />

13. </Provider>,

14. document.getElementById('root')

15.)

Full Stack Development 124 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Output

When we execute the application, it gives the output as below screen.

Now, we will be able to add items in the list.

Client-Server Communication

Client and server applications communicate by sending individual
messages on an as-needed basis, rather than an ongoing stream of
communication.

These communications are almost always initiated by clients in the
form of requests. These requests are fulfilled by the server
application which sends back a response containing the resource you
requested, among other things.

The Anatomy of an HTTP Request

An HTTP request must have the following:

● An HTTP method (like GET)

● A host URL (like https://api.spotify.com/)

Full Stack Development 125 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

● An endpoint path(like v1/artists/{id}/related-artists)

A request can also optionally have:

● Body

● Headers

● Query strings

● HTTP version

The Anatomy of an HTTP Response

A response must have the following:

● Protocol version (like HTTP/1.1)

● Status code (like 200)

● Status text (OK)

● Headers

A response may also optionally have:

● Body

Full Stack Development 126 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

HTTP Methods Explained

Now that we know what HTTP is and why it’s used, let’s talk about
the different methods we have available to us.

In the weather app example above, we wanted to retrieve weather
information about a city. But what if we wanted to submit weather
information for a city?

In real life, you probably wouldn’t have permissions to alter someone
else’s data, but let’s imagine that we are contributors to a
community-run weather app. And in addition to getting the weather
information from an API, members in that city could update this
information to display more accurate data.

Or what if we wanted to add a new city altogether that, for some
reason, doesn’t already exist in our database of cities? These are all
different functions – retrieve data, update data, create new data –
and there are HTTP methods for all of these.

HTTP POST request

We use POST to create a new resource. A POST request requires a body
in which you define the data of the entity to be created.

A successful POST request would be a 200 response code. In our
weather app, we could use a POST method to add weather data
about a new city.

HTTP GET request

Full Stack Development 127 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

We use GET to read or retrieve a resource. A successful GET returns a
response containing the information you requested.

In our weather app, we could use a GET to retrieve the current
weather for a specific city.

HTTP PUT request

We use PUT to modify a resource. PUT updates the entire resource
with data that is passed in the body payload. If there is no resource
that matches the request, it will create a new resource.

In our weather app, we could use PUT to update all weather data
about a specific city.

HTTP PATCH request

We use PATCH to modify a part of a resource. With PATCH, you only
need to pass in the data that you want to update.

In our weather app, we could use PATCH to update the rainfall for a
specified day in a specified city.

HTTP DELETE request

We use DELETE to delete a resource. In our weather app, we could use
DELETE to delete a city we no longer wanted to track for some reason.

Full Stack Development 128 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

UNIT - IV

Model View Controller (MVC) Pattern MVC Architecture using Spring

The Spring Web MVC framework provides Model-View-Controller (MVC) architecture
and ready components that can be used to develop flexible and loosely coupled web

applications. The MVC pattern results in separating the different aspects of the

Full Stack Development 129 |

Java Web Development: JAVA PROGRAMMING BASICS, Model View Controller (MVC) Pattern

MVC Architecture using Spring RESTful API using Spring Framework Building an application using

Maven

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

application (input logic, business logic, and UI logic), while providing a loose coupling
between these elements.

 The Model encapsulates the application data and in general they will consist of

POJO.
 The View is responsible for rendering the model data and in general it generates

HTML output that the client's browser can interpret.
 The Controller is responsible for processing user requests and building an

appropriate model and passes it to the view for rendering.

The DispatcherServlet

The Spring Web model-view-controller (MVC) framework is designed around
a DispatcherServlet that handles all the HTTP requests and responses. The request
processing workflow of the Spring Web MVC DispatcherServlet is illustrated in the
following diagram −

Following is the sequence of events corresponding to an incoming HTTP request
to DispatcherServlet −

 After receiving an HTTP request, DispatcherServlet consults
the HandlerMapping to call the appropriate Controller.

 The Controller takes the request and calls the appropriate service methods
based on used GET or POST method. The service method will set model data
based on defined business logic and returns view name to the DispatcherServlet.

 The DispatcherServlet will take help from ViewResolver to pickup the defined

view for the request.

Full Stack Development 130 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 Once view is finalized, The DispatcherServlet passes the model data to the view
which is finally rendered on the browser.

All the above-mentioned components, i.e. HandlerMapping, Controller, and
ViewResolver are parts of WebApplicationContext which is an extension of the
plainApplicationContext with some extra features necessary for web applications.

Required Configuration

You need to map requests that you want the DispatcherServlet to handle, by using a
URL mapping in the web.xml file. The following is an example to show declaration and
mapping for HelloWeb DispatcherServlet example −

The web.xml file will be kept in the WebContent/WEB-INF directory of your web
application. Upon initialization of HelloWeb DispatcherServlet, the framework will try to
load the application context from a file named [servlet-name]-servlet.xml located in
the application's WebContent/WEB-INF directory. In this case, our file will
be HelloWebservlet.xml.

Next, <servlet-mapping> tag indicates what URLs will be handled by which
DispatcherServlet. Here all the HTTP requests ending with .jsp will be handled by
the HelloWeb DispatcherServlet.

If you do not want to go with default filename as [servlet-name]-servlet.xml and default
location as WebContent/WEB-INF, you can customize this file name and location by
adding the servlet listener ContextLoaderListener in your web.xml file as follows −

Full Stack Development 131 |

<web-app id = "WebApp_ID" version = "2.4"

xmlns = "http://java.sun.com/xml/ns/j2ee"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation = "http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>Spring MVC Application</display-name>

<servlet>

<servlet-name>HelloWeb</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>

<servlet-name>HelloWeb</servlet-name>

<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

</web-app>

http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Now, let us check the required configuration for HelloWeb-servlet.xml file, placed in

your web application's WebContent/WEB-INF directory −

Following are the important points about HelloWeb-servlet.xml file −

 The [servlet-name]-servlet.xml file will be used to create the beans defined,
overriding the definitions of any beans defined with the same name in the global
scope.

 The <context:component-scan...> tag will be use to activate Spring MVC
annotation scanning capability which allows to make use of annotations like
@Controller and @RequestMapping etc.

 The InternalResourceViewResolver will have rules defined to resolve the view
names. As per the above defined rule, a logical view named hello is delegated to
a view implementation located at /WEB-INF/jsp/hello.jsp .

Full Stack Development 132 |

<beans xmlns = "http://www.springframework.org/schema/beans"

xmlns:context = "http://www.springframework.org/schema/context"

xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation = "http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan base-package = "com.tutorialspoint" />

<bean class = "org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name = "prefix" value = "/WEB-INF/jsp/" />

<property name = "suffix" value = ".jsp" />

</bean>

</beans>

<web-app...>

<!-------- DispatcherServlet definition goes here ---- >

....

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/HelloWeb-servlet.xml</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

</web-app>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/context
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

The following section will show you how to create your actual components, i.e.,
Controller, Model, and View.

Defining a Controller

The DispatcherServlet delegates the request to the controllers to execute the
functionality specific to it. The @Controller annotation indicates that a particular class
serves the role of a controller. The @RequestMapping annotation is used to map a
URL to either an entire class or a particular handler method.

The @Controller annotation defines the class as a Spring MVC controller. Here, the
first usage of @RequestMapping indicates that all handling methods on this controller
are relative to the /hello path.

Next annotation @RequestMapping(method = RequestMethod.GET) is used to

declare the printHello() method as the controller's default service method to handle
HTTP GET request. You can define another method to handle any POST request at the
same URL.

You can write the above controller in another form where you can add additional
attributes in @RequestMapping as follows −

The value attribute indicates the URL to which the handler method is mapped and

the method attribute defines the service method to handle HTTP GET request. The

following important points are to be noted about the controller defined above −

 You will define required business logic inside a service method. You can call
another method inside this method as per requirement.

 Based on the business logic defined, you will create a model within this method.
You can use setter different model attributes and these attributes will be

Full Stack Development 133 |

@Controller

@RequestMapping("/hello")

public class HelloController {

@RequestMapping(method = RequestMethod.GET)

public String printHello(ModelMap model) {

model.addAttribute("message", "Hello Spring MVC Framework!");

return "hello";

}

}

@Controller

public class HelloController {
@RequestMapping(value = "/hello", method = RequestMethod.GET)

public String printHello(ModelMap model) {

model.addAttribute("message", "Hello Spring MVC Framework!");

return "hello";

}

}

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

accessed by the view to present the final result. This example creates a model
with its attribute "message".

 A defined service method can return a String, which contains the name of
the view to be used to render the model. This example returns "hello" as logical
view name.

Creating JSP Views

Spring MVC supports many types of views for different presentation technologies.
These include - JSPs, HTML, PDF, Excel worksheets, XML, Velocity templates, XSLT,
JSON, Atom and RSS feeds, JasperReports, etc. But most commonly we use JSP
templates written with JSTL.

Let us write a simple hello view in /WEB-INF/hello/hello.jsp −

Here ${message} is the attribute which we have set up inside the Controller. You can

have multiple attributes to be displayed inside your view.

Spring Web MVC Framework Examples

Based on the above concepts, let us check few important examples which will help you
in building your Spring Web Applications −

Sr.No. Example & Description

1 Spring MVC Hello World Example

This example will explain how to write a simple Spring Web Hello World
application.

2 Spring MVC Form Handling Example

This example will explain how to write a Spring Web application using
HTML forms to submit the data to the controller and display a processed
result.

3 Spring Page Redirection Example

Full Stack Development 134 |

<html>

<head>

<title>Hello Spring MVC</title>

</head>

<body>

<h2>${message}</h2>

</body>

</html>

https://www.tutorialspoint.com/spring/spring_mvc_hello_world_example.htm
https://www.tutorialspoint.com/spring/spring_mvc_form_handling_example.htm
https://www.tutorialspoint.com/spring/spring_page_redirection_example.htm

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Learn how to use page redirection functionality in Spring MVC
Framework.

4 Spring Static Pages Example

Learn how to access static pages along with dynamic pages in Spring
MVC Framework.

5 Spring Exception Handling Example

Learn how to handle exceptions in Spring MVC Framework.

https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm

RESTful API using Spring Framework
Web-based application development is a common part

of Java development. It is part and parcel of the

enterprise domain wherein they share many common attributes

of building a production-ready application. Spring uniquely

addresses the concern for building a Web application

through its MVC framework. It is called MVC because it is

based upon the MVC (Model-View-Controller) pattern. Refer

to Wikipedia: Model-view-controller for quick information

about this. Web applications, in most cases, have a REST

counterpart for resource sharing. This article builds up on

both the idea and ends with a quick example to describe

them in a terse manner.

Spring MVC

A Web application is inherently multi-layered because the

intricacies between the user request and server response go

through several in-between stages of information

processing. Each stage is handled by a layer. For example,

the Web interaction begins with user interaction with the

browser, such as by triggering a request and getting a

response from the server. The request response paradigm is

nothing more than an exchange of certain arranged data,

which can be anywhere from trivial to heavily loaded

information gathered from, for example, a form submitted by

the user. The URL encapsulates the request from the user

and flutters into the network oblivion. Voilà! It is

Full Stack Development 135 |

https://www.tutorialspoint.com/spring/spring_static_pages_example.htm
https://www.tutorialspoint.com/spring/spring_exception_handling_example.htm
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://www.developer.com/java/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

returned back with the digital PIZZA you have requested

onto the platter called a browser. The request actually

goes through a bunch of agents under the purview of the

Spring MVC framework. Each of these agents performs

specific functions, technically called request processing,

before actually responding back to the requester. Here is

an illustration to give you an idea.

Figure 1: The Spring framework

1. The journey begins with the HTTP request (sometimes

with data payload; for example, due to form submission)

in a URL. It first stations at DispatcherServlet.

The DispatcherServlet is a class defined in

the org.springframework.web.servlet package. It is the

central dispatcher, a Java Servlet Component for the

Spring MVC framework. This front controller receives all

incoming HTTP client requests and delegates

responsibilities to other components for further

processing of the request payload.

2. The handler mapping decides where the request’s next stop
would be. It acts as a consultant to the central

dispatcher (DispatcherServlet) for routing the request to

the appropriate controller. The handler mapping parses

the request URL to make decisions and the dispatcher then

delegates the request to the controller.

3. The controller‘s responsibility is to process the

information payload received from the request. Typically,

Full Stack Development 136 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

a controller is associated with one or more business

service classes which, in turn, may have associated

database services repository classes. The repository

classes fetch database information according to the

business service logic. It is the business service

classes that contain the crux of processing. The

controller class simply carries the information received

from one or more service classes to the user. However,

the response of the controller classes is still raw data

referred to as the model and may not be user friendly

(with indentation, bullets, tables, images, look-and-

feel, and so forth).

4. Therefore, the controller packages the model data along
with model and view name back again to the central

dispatcher, DispatcherServlet.

5. The view layer can be designed using any third-party
framework such as Node.js, Angular, JSP, and so on. The

controller is decoupled from the view by passing the view

name to the DispatcherServlet and is least interested in

it. The DispatcherServlet simply carries the logical name

and consults with the view resolver to map the logical

view name with the actual implementation.

6. Once the mapping between logical view name and the
actual view implementation is made,

the DispatcherServlet delegates the responsibility of

rendering model data to the view implementation.

7. The view implementation finally carries the response
back to the client browser.

REST

REST is the acronym of Representational State Transfer. It

is a term coined in Roy Thomas Fielding’s doctoral

thesis where REST is a part that encompasses the

architecture of transferring the state of resources. The

REST architecture is made popular as an alternative to a

SOAP implementation of Web services. Although REST has a

much wider connotation than just Web services, here we’ll

limit our discussion to dealing with REST resources only.

The idea Web services are basically resource sharing in the

Full Stack Development 137 |

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Web architecture that forms the cornerstone of distributed

machine-to-machine communication. The Spring MVC framework

resides pretty well with REST and provides the necessary

API support to implement it seamlessly, with little effort.

The URL and HTTP Methods

The REST resources are located on a remote host using URL.

The idea is based on the foundation of the protocol

called HTTP. For example, the

URL http://www.payroll.com/employees may mean a list of

employees to search

and http://www.payroll.com/employees/101 may mean the

detail of an employee with, say, ID 101. Hence, the URL/URI

actually represents the actual location of a resource on

the Web. The resource may be anything a Web page, an image,

audio, video content, or the like. The HTTP protocol

specifies several methods. If they are combined with the

URL that points to the resource, we can get the following

CRUD results as outlined below.

URL Method Outcome

http://www.payroll.com/employees POST Creates a list

of employees

http://www.payroll.com/employees PUT or

PATCH

Updates a list

of employees

http://www.payroll.com/employees DELETE Deletes a list

of employees

http://www.payroll.com/employees GET Gets a list of

employees

http://www.payroll.com/employees/101 POST Creates a

employee with ID

101

Full Stack Development 138 |

http://www.payroll.com/employees
http://www.mylibrary.com/book/987654321
http://www.payroll.com/employees
http://www.payroll.com/employees
http://www.payroll.com/employees
http://www.payroll.com/employees
http://www.payroll.com/employees/101

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

http://www.payroll.com/employees/101 PUT or

PATCH

Updates employee

with ID 101

http://www.payroll.com/employees/101 DELETE Deletes employee

with ID 101

http://www.payroll.com/employees/101 GET Gets employee

details with ID

101

Though the URL is associated with HTTP methods in REST,

there are no strict rules to adhere to the outcome

described above. The point is that RESTful URL structure

should be able to locate a resource on the server. For

instance, the PUT instruction can be used to create a new

resource and POST can be used to update a resource.

REST in Spring

The REST API support was introduced in Spring from version

3.0 onwards; since then, it has steadily evolved to the

present day. We can create REST resources in the following

ways:

 Using controllers which are used to handle HTTP requests

such as GET, POST, PUT, and so forth. The PATCH command

is supported by Spring 3.2 and higher versions.

 Using the @PathVariable annotation. This annotation is

used to handle parameterized URLs. This is usually

associated with the @RequestMapping handler method in a

Servlet environment.

 There are multiple ways to represent a REST resource

using Spring views and view resolvers with rendering

model data as XML, JSON, Atom, and RSS.

 The type of model data view suits the client can be

resolved via ContentNegotiatingViewResolver.

The ContentNegotiatingViewResolver, however, does not

resolve views itself but delegates to

other ViewResolvers. By default, these other view

Full Stack Development 139 |

http://www.payroll.com/employees/101
http://www.payroll.com/employees/101
http://www.payroll.com/employees/101

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

resolvers are picked up automatically from the

application context, though they can also be set

explicitly by using the viewResolver property.

 Consuming REST resources using RestTemplate.

A Quick Example: Creating a Simple

REST Endpoint

When working with REST services with Spring, we either

publish application data as a REST service or access data

in the application from third-party REST services. Here in

this sample application, we combine Spring MVC to work with

a REST endpoint in a controller named EmployeeController.

Firstly, we create a model class named Employee. This may

be designated with JPA annotation to persist in the backend

database. But, to keep it simple, we’ll not use JPA;

instead, we’ll supply dummy data through

the EmployeeService class. In a real situation, data is

fetched from the backend database server and the data

access methods are defined in a repository class. To give a

hint, in our case, if we had used JPA with a back-end

database, it may have been an interface that

extends CrudRepository, something like this.

Employee.java

Full Stack Development 140 |

public interface EmployeeRepository extends

CrudRepository<Employee, String>{

// ...

}

package

com.mano.spring_mvc_rest_example.spring_mvc_rest.employee;

public class Employee {

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

private String id;

private String name;

private String address;

public Employee() {

}

public Employee(String id, String name, String address)

{

this.id = id;

this.name = name;

this.address = address;

}

public String getId() {

return id;

}

public void setId(String id) {

this.id = id;

}

public String getName() {

return name;

}

Full Stack Development 141 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

EmployeeService.java

Full Stack Development 142 |

public void setName(String name) {

this.name = name;

}

public String getAddress() {

return address;

}

public void setAddress(String address) {

this.address = address;

}

}

package com.mano.spring_mvc_rest_example.spring_

mvc_rest.employee;

import org.springframework.stereotype.Service;

import java.util.Arrays;

import java.util.List;

@Service

public class EmployeeService {

List<Employee> employeeList= Arrays.asList(

new Employee("spiderman","Peter Parker",

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

"New York"),

new Employee("batman","Bruce Wayne",

"Gotham City"),

new Employee("superman","Clark Kent",

"Metropolis"),

new Employee("blackpanther","T'Challa",

"Wakanda"),

new Employee("ironman","Tony Stark",

"New York")

);

public List<Employee> getEmployees(){

return employeeList;

}

public Employee getEmployee(String id){

return employeeList.stream().filter(e->e.getId()

.equals(id)).findFirst().get();

}

public void addEmployee(Employee employee){

}

Full Stack Development 143 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

EmployeeController.java

Full Stack Development 144 |

public void updateEmployee(Employee employee, String

id){

for(int i=0;i<employeeList.size();i++){

Employee e=employeeList.get(i);

if(e.getId().equals(id)) {

employeeList.set(i, employee);

break;

}

}

}

public void deleteEmployee(String id){

employeeList.removeIf(e->e.getId().equals(id));

}

}

package

com.mano.spring_mvc_rest_example.spring_mvc_rest.employee;

import

org.springframework.beans.factory.annotation.Autowired;

import org.springframework.web.bind.annotation.*;

import java.util.List;

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

@RestController

public class EmployeeController {

@Autowired

private EmployeeService employeeService;

@RequestMapping("/employees")

public List<Employee> getEmployees(){

return employeeService.getEmployees();

}

@RequestMapping("/employees/{empid}")

public Employee getEmployee(@PathVariable("empid")

String id){

return employeeService.getEmployee(id);

}

@RequestMapping(method= RequestMethod.POST,

value="/employees")

public void addEmployee(@RequestBody Employee employee){

employeeService.addEmployee(employee);

}

@RequestMapping(method = RequestMethod.PUT,

Full Stack Development 145 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Observe that the Web controller class named

EmployeeController is designated as

a @RestController annotation. This is a convenience

annotation that actually combines

the @Controller and @ResponseBody annotations.

The @Controller annotation designates a POJO as a Web

controller and is a specialization of @Component. When we

designate a POJO class with @Controller or @Component, or

even a @RestController, Spring auto detects them by

considering them as a candidate while class path scanning.

The @ResponseBody annotation indicates that the method

response value should be bound to the Web response body.

The valid URL requests for publishing REST resources for

the above code are as follows:

 Get all employees: http://localhost:8080/employees

Full Stack Development 146 |

value="/employees/{id}")

public void updateEmployee(@RequestBody Employee

employee,

@PathVariable String id){

employeeService.updateEmployee(employee, id);

}

@RequestMapping(method = RequestMethod.DELETE,

value="/employees/{id}")

public void deleteEmployee(@PathVariable String id){

employeeService>.deleteEmployee(id);

}

}

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 Get one

employee: http://localhost:8080/employees/batman

Conclusion

For REST CRUD operations such as adding, updating, and

deleting Employee, we need a HTTP client application that

enables us to test Web services, such as postman;

otherwise, we need to implement the view layer of the

application with the help of JavaScript frameworks such

as jQuery, AngularJS, and the like. To keep the write-up

well within limits, we have not implemented them here. If

possible, we’ll take them up in a separate write-up. By the

way, we have only scratched the surface of Spring MVC and

Spring REST support. Take this as a warm-up before the deep

plunge you may want to take into the stream of Spring. As

you swim across, you’ll find many interesting sight scenes.

🙂

https://www.developer.com/java/exploring-rest-apis-with-

spring-mvc/

Building an application using Maven

Lifecycle Management
One of the primary objectives of Maven is to manage the lifecycle of a Java
project. While building a Java application may appear to be a simple, one-
step process, there are actually multiple steps that take place. Maven
divides this process into three lifecycles:

1. clean: Prepares the project for building by removing unneeded files
and dependencies

2. default: Builds the project
3. site: Creates project documentation

Phases

Full Stack Development 147 |

https://www.getpostman.com/
https://jquery.com/
https://angularjs.org/
https://www.developer.com/java/exploring-rest-apis-with-spring-mvc/
https://www.developer.com/java/exploring-rest-apis-with-spring-mvc/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Maven further subdivides these lifecycles into phases, which represent a
stage in the build process. For example, the default lifecycle includes the
following phases (as well as others):

1. validate
2. compile
3. test
4. package
5. deploy

In the same way as a deployment pipeline (pp. 103 of Continuous Delivery)
granularizes the stages of deployment into discrete steps, Maven also
divides its build process into distinct phases. These phases create a chain,
where the execution of a later phase executes dependent phases.

For example, if we wish to package an application through a Maven build,
our application must first be validated, compiled, and then tested before
Maven can generate the resulting package. Thus, when executing
the package phase of a build, Maven with first execute
the validate, compile, and test phases of the build before finally executing
the package phase. Maven phases, therefore, act as a sequence of ordered
steps.

We can execute phases by supplying them as command-line arguments to
the mvn command:

1

Goals & Plugins

Full Stack Development 148 |

mvn package

https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Maven breaks phases down one more time into goals, which represent
discrete tasks that are executed as part of each phase. For example, when
we execute the compile phase in a Maven build, we are actually compiling
both the main sources that make up our project as well as the test sources
that will be used when executing our automated test cases.

Thus, the compile phase is composed of two goals:

1. compiler:compile
2. compiler:testCompile

The compiler portion of the goal is the plugin name. A Maven plugin is an
artifact that supplies Maven goals. The addition of these plugins allows
Maven to be extended beyond its basic functionality.

For example, suppose that we wish to add a goal that verifies that our code
meets the formatting standard of our company. To do this, we could create
a new plugin that has a goal that checks the source code and compares it to
our company standard, succeeding if our code meets the standard and
failing otherwise.

We can then tie this goal into the validate phase so that when Maven runs
the validate phase (such as when the compile phase is run), our custom
goal is executed. Creating such a plugin is outside the scope of this article,
but detailed information can be found in the official Maven Plugin
Development documentation.

Full Stack Development 149 |

https://maven.apache.org/guides/plugin/guide-java-plugin-development.html
https://maven.apache.org/guides/plugin/guide-java-plugin-development.html

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Note that a goal may be associated with zero or more phases. If no phase is
associated with the goal, the goal will not be included in a build by default
but can be explicitly executed. For example, if we create a goal foo:bar that
is not associated with any phase, Maven will not execute this goal for us
(since no dependency is created to a phase that Maven is executing), but we
can explicitly instruct Maven to execute this goal on the command line:

1

Likewise, a phase can have zero or more goals associated with it. If a phase
does not have any goals associated with it, though, it will not be executed
by Maven.

For a complete list of all phases and goals included in Maven by default, see
the official Maven Introduction to the Build Lifecycle documentation.

https://dzone.com/articles/building-java-applications-with-maven

Full Stack Development 150 |

mvn foo:bar

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://dzone.com/articles/building-java-applications-with-maven

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Relation Schema
Relation schema defines the design and structure of the relation like it consists
of the relation name, set of attributes/field names/column names. every attribute
would have an associated domain.

There is a student named Geeks, she is pursuing B.Tech, in the 4th year, and
belongs to IT department (department no. 1) and has roll number 1601347 She
is proctored by Mrs. S Mohanty. If we want to represent this using databases
we would have to create a student table with name, sex, degree, year,
department, department number, roll number and proctor (adviser) as the
attributes.

student (rollNo, name, degree, year, sex, deptNo, advisor)

Note –

If we create a database, details of other students can also be recorded.
Similarly, we have the IT Department, with department Id 1, having Mrs. Sujata
Chakravarty as the head of department. And we can call the department on the
number 0657 228662 .

This and other departments can be represented by the department table,
having department ID, name, hod and phone as attributes.

department (deptId, name, hod, phone)

The course that a student has selected has a courseid, course name, credit and
department number.

course (coursId, ename, credits, deptNo)

The professor would have an employee Id, name, sex, department no. and

phone number.

professor (empId, name, sex, startYear, deptNo, phone)

We can have another table named enrollment, which has roll no, courseId,
semester, year and grade as the attributes.

enrollment (rollNo, coursId, sem, year, grade)

Full Stack Development 151 |

UNIT - V
Databases & Deployment: Relational schemas and normalization Structured Query Language (SQL)

Data persistence using Spring JDBC Agile development principles and deploying application in Cloud

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Teaching can be another table, having employee id, course id, semester, year

and classroom as attributes.

teaching (empId, coursed, sem, year, Classroom)

When we start courses, there are some courses which another course that
needs to be completed before starting the current course, so this can be
represented by the Prerequisite table having prerequisite course and course id
attributes.

prerequisite (preReqCourse, courseId)

The relations between them is represented through arrows in the
following Relation diagram,

1. This represents that the deptNo in student table table is same as
deptId used in department table. deptNo in student table is a foreign
key. It refers to deptId in department table.

Full Stack Development 152 |

https://www.geeksforgeeks.org/types-of-keys-in-relational-model-candidate-super-primary-alternate-and-foreign/
https://www.geeksforgeeks.org/types-of-keys-in-relational-model-candidate-super-primary-alternate-and-foreign/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

2. This represents that the advisor in student table is a foreign key. It
refers to empId in professor table.

3. This represents that the hod in department table is a foreign key. It

refers to empId in professor table.

4. This represents that the deptNo in course table table is same as
deptId used in department table. deptNo in student table is a foreign
key. It refers to deptId in department table.

5. This represents that the rollNo in enrollment table is same as rollNo

used in student table.

6. This represents that the courseId in enrollment table is same as

courseId used in course table.

7. This represents that the courseId in teaching table is same as
courseId used in course table.

8. This represents that the empId in teaching table is same as empId

used in professor table.

9. This represents that preReqCourse in prerequisite table is a foreign

key. It refers to courseId in course table.

10. This represents that the deptNo in student table is same as deptId

used in department table.

Structured Query Language (SQL)

Structured Query Language is a standard Database language which is used to
create, maintain and retrieve the relational database. Following are some
interesting facts about SQL.

 SQL is case insensitive. But it is a recommended practice to use
keywords (like SELECT, UPDATE, CREATE, etc) in capital letters and
use user defined things (liked table name, column name, etc) in small
letters.

 We can write comments in SQL using “–” (double hyphen) at the

beginning of any line.

Full Stack Development 153 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 SQL is the programming language for relational databases (explained
below) like MySQL, Oracle, Sybase, SQL Server, Postgre, etc. Other non-
relational databases (also called NoSQL) databases like MongoDB,
DynamoDB, etc do not use SQL

 Although there is an ISO standard for SQL, most of the implementations
slightly vary in syntax. So we may encounter queries that work in SQL
Server but do not work in MySQL.

What is Relational Database?

Relational database means the data is stored as well as retrieved in the form of
relations (tables). Table 1 shows the relational database with only one relation
called STUDENT which
stores ROLL_NO, NAME, ADDRESS, PHONE and AGE of students.

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

TABLE 1

These are some important terminologies that are used in terms of relation.
Attribute: Attributes are the properties that define a relation.
e.g.; ROLL_NO, NAME etc.
Tuple: Each row in the relation is known as tuple. The above relation contains 4
tuples, one of which is shown as:

1 RAM DELHI 9455123451 18

Degree: The number of attributes in the relation is known as degree of the
relation. The STUDENT relation defined above has degree 5.

Full Stack Development 154 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Cardinality: The number of tuples in a relation is known as cardinality.
The STUDENT relation defined above has cardinality 4.
Column: Column represents the set of values for a particular attribute. The
column ROLL_NO is extracted from relation STUDENT.

ROLL_NO

1

2

3

4

The queries to deal with relational database can be categories as:

Data Definition Language: It is used to define the structure of the database.

e.g; CREATE TABLE, ADD COLUMN, DROP COLUMN and so on.
Data Manipulation Language: It is used to manipulate data in the relations.
e.g.; INSERT, DELETE, UPDATE and so on.
Data Query Language: It is used to extract the data from the relations. e.g.;

SELECT
So first we will consider the Data Query Language. A generic query to retrieve
from a relational database is:

1. SELECT [DISTINCT] Attribute_List FROM R1,R2….RM

2. [WHERE condition]
3. [GROUP BY (Attributes)[HAVING condition]]
4. [ORDER BY(Attributes)[DESC]];
Part of the query represented by statement 1 is compulsory if you want to
retrieve from a relational database. The statements written inside [] are optional.
We will look at the possible query combination on relation shown in Table 1.

Case 1: If we want to retrieve attributes ROLL_NO and NAME of all students,

the query will be:
SELECT ROLL_NO, NAME FROM STUDENT;

ROLL_NO NAME

Full Stack Development 155 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

1 RAM

2 RAMESH

3 SUJIT

4 SURESH

Case 2: If we want to retrieve ROLL_NO and NAME of the students
whose ROLL_NO is greater than 2, the query will be:
SELECT ROLL_NO, NAME FROM STUDENT
WHERE ROLL_NO>2;

ROLL_NO NAME

3 SUJIT

4 SURESH

CASE 3: If we want to retrieve all attributes of students, we can write * in place

of writing all attributes as:
SELECT * FROM STUDENT
WHERE ROLL_NO>2;

ROLL_NO NAME ADDRESS PHONE AGE

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

CASE 4: If we want to represent the relation in ascending order by AGE, we

can use ORDER BY clause as:
SELECT * FROM STUDENT ORDER BY AGE;

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

Full Stack Development 156 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

4 SURESH DELHI 9156768971 18

3 SUJIT ROHTAK 9156253131 20

Note: ORDER BY AGE is equivalent to ORDER BY AGE ASC. If we want to
retrieve the results in descending order of AGE, we can use ORDER
BY AGE DESC.
CASE 5: If we want to retrieve distinct values of an attribute or group of

attribute, DISTINCT is used as in:
SELECT DISTINCT ADDRESS FROM STUDENT;

ADDRESS

DELHI

GURGAON

ROHTAK

If DISTINCT is not used, DELHI will be repeated twice in result set. Before
understanding GROUP BY and HAVING, we need to understand aggregations
functions in SQL.

AGGRATION FUNCTIONS: Aggregation functions are used to perform

mathematical operations on data values of a relation. Some of the common

aggregation functions used in SQL are:
5. COUNT: Count function is used to count the number of rows in a

relation. e.g;
SELECT COUNT (PHONE) FROM STUDENT;

COUNT(PHONE)

4

6. SUM: SUM function is used to add the values of an attribute in a

relation. e.g;
SELECT SUM (AGE) FROM STUDENT;

SUM(AGE)

74

Full Stack Development 157 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

In the same way, MIN, MAX and AVG can be used. As we have seen above,

all aggregation functions return only 1 row.

AVERAGE: It gives the average values of the tupples. It is also defined as sum
divided by count values.
Syntax:AVG(attributename)
OR
Syntax: SUM(attributename)/COUNT(attributename)

The above mentioned syntax also retrieves the average value of tupples.

MAXIMUM: It extracts the maximum value among the set of tupples.
Syntax:MAX(attributename)

MINIMUM: It extracts the minimum value amongst the set of all the tupples.
Syntax:MIN(attributename)

GROUP BY: Group by is used to group the tuples of a relation based on an

attribute or group of attribute. It is always combined with aggregation function
which is computed on group. e.g.;
SELECT ADDRESS, SUM(AGE) FROM STUDENT
GROUP BY (ADDRESS);
In this query, SUM(AGE) will be computed but not for entire table but for each

address. i.e.; sum of AGE for address DELHI(18+18=36) and similarly for other
address as well. The output is:

ADDRESS SUM(AGE)

DELHI 36

GURGAON 18

ROHTAK 20

If we try to execute the query given below, it will result in error because
although we have computed SUM(AGE) for each address, there are more than
1 ROLL_NO for each address we have grouped. So it can’t be displayed in
result set. We need to use aggregate functions on columns after SELECT
statement to make sense of the resulting set whenever we are using GROUP
BY.

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT
GROUP BY (ADDRESS);

Full Stack Development 158 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

What is Data Normalization and Why Is It
Important?
Normalization is the process of reducing data redundancy in a table and
improving data integrity. Then why do you need it? If there is no normalization
in SQL, there will be many problems, such as:

 Insert Anomaly: This happens when we cannot insert data into the table

without another.
 Update Anomaly: This is due to data inconsistency caused by data

redundancy and data update.
 Delete exception: Occurs when some attributes are lost due to the

deletion of other attributes.

So normalization is a way of organizing data in a database. Normalization
involves organizing the columns and tables in the database to ensure that their
dependencies are correctly implemented using database constraints.
Normalization is the process of organizing data in a proper manner. It is used to
minimize the duplication of various relationships in the database. It is also used
to troubleshoot exceptions such as inserts, deletes, and updates in the table. It
helps to split a large table into several small normalized tables. Relational links
and links are used to reduce redundancy. Normalization, also known as
database normalization or data normalization, is an important part of relational
database design because it helps to improve the speed, accuracy, and
efficiency of the database.
Now the is a question arises: What is the relationship between SQL and
normalization? Well, SQL is the language used to interact with the database.
Normalization in SQL improves data distribution. In order to initiate interaction,
the data in the database must be normalized. Otherwise, we cannot continue
because it will cause an exception. Normalization can also make it easier to
design the database to have the best structure for atomic elements (that is,
elements that cannot be broken down into smaller parts). Usually, we break
large tables into small tables to improve efficiency. Edgar F. Codd defined the
first paradigm in 1970, and finally other paradigms. When normalizing a
database, organize data into tables and columns. Make sure that each table
contains only relevant data. If the data is not directly related, create a new table
for that data. Normalization is necessary to ensure that the table only contains
data directly related to the primary key, each data field contains only one data
element, and to remove redundant (duplicated and unnecessary) data.

Java Database Connectivity (JDBC) is an application programming
interface (API) that defines how a client may access a database. It is a data
access technology used for Java database connectivity. It provides methods to

Full Stack Development 159 |

https://www.geeksforgeeks.org/introduction-of-database-normalization/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

query and update data in a database and is oriented toward relational
databases. JDBC offers a natural Java interface for working with SQL. JDBC is
needed to provide a “pure Java” solution for application development. JDBC
API uses JDBC drivers to connect with the database.
There are 4 Types of JDBC Drivers:

1. JDBC-ODBC Bridge Driver
2. Native API Driver (partially java driver)
3. Network Protocol Driver (fully java driver)
4. Thin Driver (fully java driver)

The advantages of JDBC API is as follows:
1. Automatically creates the XML format of data from the database.
2. It supports query and stored procedures.
3. Almost any database for which ODBC driver is installed can be accessed.

The disadvantages of JDBC API is as follows:

1. Writing a lot of codes before and after executing the query, such as
creating connection, creating a statement, closing result-set, closing
connection, etc.

2. Writing exception handling code on the database logic.
3. Repetition of these codes from one to another database logic is time-

consuming.
These problems of JDBC API are eliminated by Spring JDBC-Template. It

provides methods to write the queries directly that saves a lot of time and effort.

Data Access using JDBC Template

There are a number of options for selecting an approach to form the basis for
your JDBC database access. Spring framework provides the following
approaches for JDBC database access:

 JdbcTemplate

 NamedParameterJdbcTemplate

 SimpleJdbcTemplate

 SimpleJdbcInsert and SimpleJdbcCall

JDBC Template

JdbcTemplate is a central class in the JDBC core package that simplifies the
use of JDBC and helps to avoid common errors. It internally uses JDBC
API and eliminates a lot of problems with JDBC API. It executes SQL queries
or updates, initiating iteration over ResultSets and catching JDBC exceptions

Full Stack Development 160 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

and translating them to the generic. It executes core JDBC workflow, leaving
application code to provide SQL and extract results. It handles the exception
and provides the informative exception messages with the help of exception
classes defined in the org.springframework.dao package.

The common methods of spring JdbcTemplate class.

Methods Description

public int update(String query) Used to insert, update and delete records.

public int update(String query,
Object… args)

Used to insert, update and delete records
using PreparedStatement using given arguments.

public T execute(String sql,
PreparedStatementCallback action)

Executes the query by
using PreparedStatementCallback.

public void execute(String query) Used to execute DDL query.

public T query(String sql,
ResultSetExtractor result)

Used to fetch records using ResultSetExtractor.

JDBC Template Queries

Basic query to count students stored in the database using JdbcTemplate.
int result = jdbcTemplate.queryForObject(

"SELECT COUNT(*) FROM STUDENT", Integer.class);

And here’s a simple INSERT:
public int addStudent(int id)

{

return jdbcTemplate.update("INSERT INTO STUDENT VALUES (?, ?, ?)",
id, "megan", "India");

}

The standard syntax of providing parameters is using the “?” character.
Implementation: Spring JdbcTemplate
We start with some simple configurations of the data source. We’ll use
a MySQL database
Example:

Full Stack Development 161 |

https://www.geeksforgeeks.org/mysql-database-files/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

/*package whatever //do not write package name here */

@Configuration

@ComponentScan("com.exploit.jdbc")

public class SpringJdbcConfig {

@Bean public DataSource mysqlDataSource()

{

DriverManagerDataSource dataSource

= new DriverManagerDataSource();

dataSource.setDriverClassName(

"com.mysql.jdbc.Driver");

dataSource.setUrl(

"jdbc:mysql://localhost:8800/springjdbc");

dataSource.setUsername("user");

dataSource.setPassword("password");

return dataSource;

}

}

A. File: Student.java

Full Stack Development 162 |

 Java

 Java

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Java Program to Illustrate Student Class

package com.exploit.org;

// Class

public class Student {

// Class data members

private Integer age;

private String name;

private Integer id;

// Constructor

public Student() {}

// Setters and Getters

public void setAge(Integer age) { this.age = age; }

public Integer getAge() { return age; }

public void setName(String name) { this.name = name; }

Full Stack Development 163 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

public String getName() { return name; }

public void setId(Integer id) { this.id = id; }

public Integer getId() { return id; }

}

B. File: StudentDAO.java
Below is the implementation of the Data Access Object interface file

StudentDAO.java.

Example:

 Java

// Java Program to Illustrate StudentDAO Class

package com.exploit.org;

// importing required classes

import java.util.List;

import javax.sql.DataSource;

// Class

public interface StudentDAO {

Full Stack Development 164 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Used to initialize database resources

// ie. connection

public void setDataSource(DataSource ds);

// Used to list down all the records

// from the Student table

public List<Student> listStudents();

}

C. File: Maven Dependency
Dependency is used in the pom.xml file.
Example:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-jdbc</artifactId>

</dependency>

<dependency>

<groupId>mysql</groupId>

Full Stack Development 165 |

 XML

https://www.geeksforgeeks.org/introduction-apache-maven-build-automation-tool-java-projects/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

<artifactId>mysql-connector-java</artifactId>

<scope>runtime</scope>

</dependency>

D. File: StudentJDBCTemplate.java
Below is the implementation class file StudentJDBCTemplate.java for the
defined DAO interface StudentDAO

 Example:

// Java Program Illustrating Implementation

// of StudentDAO Class

package com.exploit.org;

// Importing required classes

import java.util.List;

Full Stack Development 166 |

 Java

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

import javax.sql.DataSource;

import org.springframework.jdbc.core.JdbcTemplate;

// Class

// Implementing StudentDAO Class

public class StudentJDBCTemp implements StudentDAO {

// Class data members

private DataSource dataSource;

private JdbcTemplate jdbcTemplateObject;

// Method 1

public void setDataSource(DataSource dataSource)

{

// This keyword refers to current instance itself

this.dataSource = dataSource;

this.jdbcTemplateObject

= new JdbcTemplate(dataSource);

}

Full Stack Development 167 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

// Method 2

public List<Student> listStudents()

{

// Custom SQL query

String SQL = "select * from Student";

List<Student> students = jdbcTemplateObject.query(

SQL, new StudentMapper());

return students;

}

}

Cloud Deployment Models

In cloud computing, we have access to a shared pool of computer resources
(servers, storage, programs, and so on) in the cloud. You simply need to
request additional resources when you require them. Getting resources up and
running quickly is a breeze thanks to the clouds. It is possible to release
resources that are no longer necessary. This method allows you to just pay for
what you use. Your cloud provider is in charge of all upkeep. It functions as a
virtual computing environment with a deployment architecture that varies
depending on the amount of data you want to store and who has access to the
infrastructure.

Deployment Models

The cloud deployment model identifies the specific type of cloud environment
based on ownership, scale, and access, as well as the cloud’s nature and

Full Stack Development 168 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

purpose. The location of the servers you’re utilizing and who controls them are
defined by a cloud deployment model. It specifies how your cloud infrastructure
will look, what you can change, and whether you will be given services or will
have to create everything yourself. Relationships between the infrastructure and
your users are also defined by cloud deployment types.

Different types of cloud computing deployment models are:

1. Public cloud
2. Private cloud
3. Hybrid cloud
4. Community cloud
5. Multi-cloud

Public Cloud

The public cloud makes it possible for anybody to access systems and services.
The public cloud may be less secure as it is open to everyone. The public cloud
is one in which cloud infrastructure services are provided over the internet to
the general people or major industry groups. The infrastructure in this cloud
model is owned by the entity that delivers the cloud services, not by the
consumer. It is a type of cloud hosting that allows customers and users to easily
access systems and services. This form of cloud computing is an excellent
example of cloud hosting, in which service providers supply services to a variety
of customers. In this arrangement, storage backup and retrieval services are
given for free, as a subscription, or on a per-user basis. Example: Google App
Engine etc.

Advantages of Public Cloud Model:

 Minimal Investment: Because it is a pay-per-use service, there is no

substantial upfront fee, making it excellent for enterprises that require
immediate access to resources.

 No setup cost: The entire infrastructure is fully subsidized by the cloud

service providers, thus there is no need to set up any hardware.

 Infrastructure Management is not required: Using the public cloud

does not necessitate infrastructure management.

Full Stack Development 169 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 No maintenance: The maintenance work is done by the service provider

(Not users).

 Dynamic Scalability: To fulfill your company’s needs, on-demand

resources are accessible.
Disadvantages of Public Cloud Model:
 Less secure: Public cloud is less secure as resources are public so there is

no guarantee of high-level security.

 Low customization: It is accessed by many public so it can’t be

customized according to personal requirements.

Private Cloud

The private cloud deployment model is the exact opposite of the public cloud
deployment model. It’s a one-on-one environment for a single user (customer).
There is no need to share your hardware with anyone else. The distinction
between private and public clouds is in how you handle all of the hardware. It is
also called the “internal cloud” & it refers to the ability to access systems and
services within a given border or organization. The cloud platform is
implemented in a cloud-based secure environment that is protected by powerful
firewalls and under the supervision of an organization’s IT department. The
private cloud gives greater flexibility of control over cloud resources.

Advantages of Private Cloud Model:
 Better Control: You are the sole owner of the property. You gain

complete command over service integration, IT operations, policies, and
user behavior.

 Data Security and Privacy: It’s suitable for storing corporate information to

which only authorized staff have access. By segmenting resources within

the same infrastructure, improved access and security can be achieved.

Full Stack Development 170 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 Supports Legacy Systems: This approach is designed to work with

legacy systems that are unable to access the public cloud.

 Customization: Unlike a public cloud deployment, a private cloud allows a

company to tailor its solution to meet its specific needs.

Disadvantages of Private Cloud Model:

 Less scalable: Private clouds are scaled within a certain range as there is

less number of clients.

 Costly: Private clouds are more costly as they provide personalized

facilities.

Hybrid Cloud

By bridging the public and private worlds with a layer of proprietary software,
hybrid cloud computing gives the best of both worlds. With a hybrid solution,
you may host the app in a safe environment while taking advantage of the
public cloud’s cost savings. Organizations can move data and applications
between different clouds using a combination of two or more cloud deployment
methods, depending on their needs.

Advantages of Hybrid Cloud Model:

 Flexibility and control: Businesses with more flexibility can design

personalized solutions that meet their particular needs.

 Cost: Because public clouds provide scalability,

 you’ll only be responsible for paying for the extra capacity

if you require it.

 Security: Because data is properly separated, the chances of data theft by

attackers are considerably reduced

.

Disadvantages of Hybrid Cloud Model:

Full Stack Development 171 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

 Difficult to manage: Hybrid clouds are difficult to manage as it is a

combination of both public and private cloud. So, it is complex.

 Slow data transmission: Data transmission in the hybrid cloud takes

place through the public cloud so latency occurs.

Community Cloud

It allows systems and services to be accessible by a group of organizations. It is
a distributed system that is created by integrating the services of different
clouds to address the specific needs of a community, industry, or business. The
infrastructure of the community could be shared between the organization
which has shared concerns or tasks. It is generally managed by a third party or
by the combination of one or more organizations in the community.

Advantages of Community Cloud Model:
 Cost Effective: It is cost-effective because the cloud is shared by

multiple organizations or communities.

 Security: Community cloud provides better security.

 Shared resources: It allows you to share resources, infrastructure, etc.

with multiple organizations.

 Collaboration and data sharing: It is suitable for both collaboration and

data sharing.

Disadvantages of Community Cloud Model:

 Limited Scalability: Community cloud is relatively less scalable as many

organizations share the same resources according to their collaborative

interests.

 Rigid in customization: As the data and resources are shared among

different organizations according to their mutual interests if an organization
wants some changes according to their needs they cannot do so because it
will have an impact on other organizations.

Full Stack Development 172 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

Multi-cloud

We’re talking about employing multiple cloud providers at the same time under
this paradigm, as the name implies. It’s similar to the hybrid cloud deployment
approach, which combines public and private cloud resources. Instead of
merging private and public clouds, multi-cloud uses many public
clouds. Although public cloud providers provide numerous tools to improve the
reliability of their services, mishaps still occur. It’s quite rare that two distinct
clouds would have an incident at the same moment. As a result, multi-cloud
deployment improves the high availability of your services even more.

Advantages of a Multi-Cloud Model:

 You can mix and match the best features of each cloud provider’s
services to suit the demands of your apps, workloads, and business by
choosing different cloud providers.

 Reduced Latency: To reduce latency and improve user experience, you

can choose cloud regions and zones that are close to your clients.

 High availability of service: It’s quite rare that two distinct clouds would

have an incident at the same moment. So, the multi-cloud deployment
improves the high availability of your services.

Disadvantages of Multi-Cloud Model:

 Complex: The combination of many clouds makes the system complex

and bottlenecks may occur.

 Security issue: Due to the complex structure, there may be loopholes to

which a hacker can take advantage hence, makes the data insecure.

Real World Applications of Cloud Computing
In simple Cloud Computing refers to the on-demand availability of IT resources
over internet. It delivers different types of services to the customer over the
internet. There are three basic types of services models are available in cloud
computing i.e., Infrastructure As A Service (IAAS), Platform As A Service
(PAAS), Software As A Service (SAAS). On the basis of accessing and
availing cloud computing services, they are divided mainly into four types of
cloud i.e Public cloud, Private Cloud, Hybrid Cloud, and Community cloud which
is called Cloud deployment model. The demand for cloud services is increasing
so fast and the global cloud computing market is growing at that rate. A large
number of organizations and different business sectors are preferring cloud

Full Stack Development 173 |

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

services nowadays as they are getting a list of benefits from cloud computing.
Different organizations using cloud computing for different purposes and with
respect to that Cloud Service Providers are providing various applications in
different fields. Applications of Cloud Computing in real-world : Cloud
Service Providers (CSP) are providing many types of cloud services and now if
we will cloud computing has touched every sector by providing various cloud
applications. Sharing and managing resources is easy in cloud computing that’s
why it is one of the dominant fields of computing. These properties have made it
an active component in many fields. Now let’s know some of the real-world
applications of cloud computing.
1. Online Data Storage: Cloud computing allows storing data like files,

images, audios, and videos, etc on the cloud storage. The organization need
not set physical storage systems to store a huge volume of business data
which costs so high nowadays. As they are growing technologically, data
generation is also growing with respect to time, and storing that becoming
problem. In that situation, Cloud storage is providing this service to store and
access data any time as per requirement.

2. Backup and Recovery : Cloud vendors provide security from their side by
storing safe to the data as well as providing a backup facility to the data. They
offer various recovery application for retrieving the lost data. In the traditional
way backup of data is a very complex problem and also it is very difficult
sometimes impossible to recover the lost data. But cloud computing has made
backup and recovery applications very easy where there is no fear of running
out of backup media or loss of data.

3. Bigdata Analysis : We know the volume of big data is so high where storing
that in traditional data management system for an organization is impossible.
But cloud computing has resolved that problem by allowing the organizations
to store their large volume of data in cloud storage without worrying about
physical storage. Next comes analyzing the raw data and finding out insights
or useful information from it is a big challenge as it requires high-quality tools
for data analytics. Cloud computing provides the biggest facility to
organizations in terms of storing and analyzing big data.

4. Testing and development : Setting up the platform for development and

finally performing different types of testing to check the readiness of the
product before delivery requires different types of IT resources and
infrastructure. But Cloud computing provides the easiest approach for
development as well as testing even if deployment by using their IT
resources with minimal expenses. Organizations find it more helpful as they
got scalable and flexible cloud services for product development, testing,
and deployment.

5. Anti-Virus Applications : Previously, organizations were installing antivirus
software within their system even if we will see we personally also keep
antivirus software in our system for safety from outside cyber threats.

Full Stack Development 174 |

https://www.geeksforgeeks.org/what-is-big-data/
https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/an-introduction-to-software-development-design-principles/
https://www.geeksforgeeks.org/how-an-antivirus-works/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

But nowadays cloud computing provides cloud antivirus software which
means the software is stored in the cloud and monitors your
system/organization’s system remotely. This antivirus software identifies the
security risks and fixes them. Sometimes also they give a feature to
download the software.

6. E-commerce Application : Cloud-based e-commerce allows responding

quickly to the opportunities which are emerging. Users respond quickly to the
market opportunities as well as the traditional e-commerce responds to the
challenges quickly. Cloud-based e-commerce gives a new approach to doing
business with the minimum amount as well as minimum time possible.
Customer data, product data, and other operational systems are managed in
cloud environments.

7. Cloud computing in education : Cloud computing in the education sector
brings an unbelievable change in learning by providing e-learning, online
distance learning platforms, and student information portals to the students. It
is a new trend in education that provides an attractive environment for
learning, teaching, experimenting, etc to students, faculty members, and
researchers. Everyone associated with the field can connect to the cloud of
their organization and access data and information from there.

8. E-Governance Application : Cloud computing can provide its services to
multiple activities conducted by the government. It can support the
government to move from the traditional ways of management and service
providers to an advanced way of everything by expanding the availability of
the environment, making the environment more scalable and customized. It
can help the government to reduce the unnecessary cost in managing,
installing, and upgrading applications and doing all these with help of could
computing and utilizing that money public service.

1. Cloud Computing in Medical Fields : In the medical field also
nowadays cloud computing is used for storing and accessing the data as it
allows to store data and access it through the internet without worrying about
any physical setup. It facilitates easier access and distribution of information
among the various medical professional and the individual patients.
Similarly, with help of cloud computing offsite buildings and treatment
facilities like labs, doctors making emergency house calls and ambulances
information, etc can be easily accessed and updated remotely instead of
having to wait until they can access a hospital computer.

2. Entertainment Applications : Many people get entertainment from the
internet, in that case, cloud computing is the perfect place for reaching to a
varied consumer base. Therefore different types of entertainment industries
reach near the target audience by adopting a multi-cloud strategy. Cloud-
based entertainment provides various entertainment applications such as

Full Stack Development 175 |

https://www.geeksforgeeks.org/e-commerce/
https://www.geeksforgeeks.org/e-governance/

B.Tech – CSE (Emerging Technologies)

MRCET

P a g e

online music/video, online games and video conferencing, streaming
services, etc and it can reach any device be it TV, mobile, set-top box, or
any other form. It is a new form of entertainment called On-Demand
Entertainment (ODE). With respect to this as a cloud, the market is growing
rapidly and it is providing various services day by day. So other application
of cloud computing includes social applications, management application,
business applications, art application, and many more. So in the future cloud
computing is going to touch many more sectors by providing more
applications and services.

Full Stack Development 176 |

	(Autonomous Institution – UGC, Govt. of India)
	For more information: www.mrcet.ac.in

	HTML – ELEMENTS
	HTML element is defined by a starting tag. If the element contains other content, it ends with a closing tag, where the element name is preceded by a forward slash as shown below with few tags:
	3. HTML – ATTRIBUTES
	6. HTML – PHRASE TAGS
	7.HTML – META TAGS
	Github
	What is CSS?
	What is JavaScript?
	Wrapping Up
	Examples
	A note about macOS
	HP-UX Unix
	Oracle or Sun Solaris OS
	IBM AIX Unix

	Summing up
	Why Use JSON?
	Storing Data
	JSON Example
	Need of React Router
	React Router Installation
	Components in React Router
	What is Route?
	Adding Navigation using Link component
	Benefits Of React Router
	React Forms
	Creating Form

	React Redux
	Why use React Redux?
	Redux Architecture

	React Redux Example
	Required Configuration
	Defining a Controller
	Creating JSP Views
	Spring Web MVC Framework Examples
	REST
	The URL and HTTP Methods
	REST in Spring
	A Quick Example: Creating a Simple REST Endpoint
	Employee.java
	EmployeeService.java
	EmployeeController.java

	Conclusion
	What is Data Normalization and Why Is It Important?

